// // MemoryMap.hpp // Clock Signal // // Created by Thomas Harte on 25/10/2020. // Copyright © 2020 Thomas Harte. All rights reserved. // #ifndef Machines_Apple_AppleIIgs_MemoryMap_hpp #define Machines_Apple_AppleIIgs_MemoryMap_hpp #include #include #include "../AppleII/LanguageCardSwitches.hpp" #include "../AppleII/AuxiliaryMemorySwitches.hpp" namespace Apple { namespace IIgs { class MemoryMap { public: MemoryMap() : auxiliary_switches_(*this), language_card_(*this) {} void set_storage(std::vector &ram, std::vector &rom) { // Establish bank mapping. uint8_t next_region = 0; auto region = [&next_region, this]() -> uint8_t { assert(next_region != regions.size()); return next_region++; }; auto set_region = [this](uint8_t bank, uint16_t start, uint16_t end, uint8_t region) { assert((end == 0xffff) || !(end&0xff)); assert(!(start&0xff)); // Fill in memory map. size_t target = size_t((bank << 8) | (start >> 8)); for(int c = start; c < end; c += 0x100) { region_map[target] = region; ++target; } }; // Current beliefs about the IIgs memory map: // // * language card banking applies to banks $00, $01, $e0 and $e1; // * auxiliary memory switches apply to banks $00 only; // * shadowing may be enabled only on banks $00 and $01, or on all RAM pages. // // So banks $00 and $01 need their own divided spaces at the shadowing resolution, // all the other fast RAM banks can share a set of divided spaces, $e0 and $e1 need // to be able to deal with language card-level division but no further, and the pure // ROM pages don't need to be subdivided at all. // Reserve region 0 as that for unmapped memory. region(); // Bank $00: all locations potentially affected by the auxiliary switches or the // language switches. Which will naturally align with shadowable zones. set_region(0x00, 0x0000, 0x0200, region()); set_region(0x00, 0x0200, 0x0400, region()); set_region(0x00, 0x0400, 0x0800, region()); set_region(0x00, 0x0800, 0x2000, region()); set_region(0x00, 0x2000, 0x4000, region()); set_region(0x00, 0x4000, 0xc000, region()); set_region(0x00, 0xc000, 0xc100, region()); set_region(0x00, 0xc100, 0xc300, region()); set_region(0x00, 0xc300, 0xc400, region()); set_region(0x00, 0xc400, 0xc800, region()); set_region(0x00, 0xc800, 0xd000, region()); set_region(0x00, 0xd000, 0xe000, region()); set_region(0x00, 0xe000, 0xffff, region()); // Bank $01: all locations potentially affected by the language switches, by shadowing, // or marked for IO. set_region(0x01, 0x0000, 0x0400, region()); set_region(0x01, 0x0400, 0x0800, region()); set_region(0x01, 0x0800, 0x0c00, region()); set_region(0x01, 0x0c00, 0x2000, region()); set_region(0x01, 0x2000, 0x4000, region()); set_region(0x01, 0x4000, 0x6000, region()); set_region(0x01, 0x6000, 0xa000, region()); set_region(0x01, 0xa000, 0xc000, region()); set_region(0x01, 0xc000, 0xd000, region()); set_region(0x01, 0xd000, 0xe000, region()); set_region(0x01, 0xe000, 0xffff, region()); // Banks $02–[end of RAM]: all locations potentially affected by shadowing. const uint8_t fast_ram_bank_count = uint8_t((ram.size() - 128*1024) / 6536); if(fast_ram_bank_count > 2) { const uint8_t evens[] = { region(), // 0x0000 – 0x0400. region(), // 0x0400 – 0x0800. region(), // 0x0800 – 0x0c00. region(), // 0x0c00 – 0x2000. region(), // 0x2000 – 0x4000. region(), // 0x4000 – 0x6000. region(), // 0x6000 – [end]. }; const uint8_t odds[] = { region(), // 0x0000 – 0x0400. region(), // 0x0400 – 0x0800. region(), // 0x0800 – 0x0c00. region(), // 0x0c00 – 0x2000. region(), // 0x2000 – 0x4000. region(), // 0x4000 – 0x6000. region(), // 0x6000 – 0xa000. region(), // 0xa000 – [end]. }; for(uint8_t bank = 0x02; bank < fast_ram_bank_count; bank += 2) { set_region(bank, 0x0000, 0x0400, evens[0]); set_region(bank, 0x0400, 0x0800, evens[1]); set_region(bank, 0x0800, 0x0c00, evens[2]); set_region(bank, 0x0c00, 0x2000, evens[3]); set_region(bank, 0x2000, 0x4000, evens[4]); set_region(bank, 0x4000, 0x6000, evens[5]); set_region(bank, 0x6000, 0xffff, evens[6]); set_region(bank+1, 0x0000, 0x0400, odds[0]); set_region(bank+1, 0x0400, 0x0800, odds[1]); set_region(bank+1, 0x0800, 0x0c00, odds[2]); set_region(bank+1, 0x0c00, 0x2000, odds[3]); set_region(bank+1, 0x2000, 0x4000, odds[4]); set_region(bank+1, 0x4000, 0x6000, odds[5]); set_region(bank+1, 0x6000, 0xa000, odds[6]); set_region(bank+1, 0xa000, 0xffff, odds[7]); } } // [Banks $80–$e0: empty]. // Banks $e0, $e1: all locations potentially affected by the language switches or marked for IO. for(uint8_t c = 0; c < 2; c++) { set_region(0xe0 + c, 0x0000, 0xc000, region()); set_region(0xe0 + c, 0xc000, 0xd000, region()); set_region(0xe0 + c, 0xd000, 0xffff, region()); } // [Banks $e2–[ROM start]: empty]. // ROM banks: directly mapped to ROM. const uint8_t rom_bank_count = uint8_t(rom.size() >> 16); const uint8_t first_rom_bank = uint8_t(0x100 - rom_bank_count); const uint8_t rom_region = region(); for(uint8_t c = 0; c < rom_bank_count; ++c) { set_region(first_rom_bank + c, 0x0000, 0xff00, rom_region); } // Apply proper storage to those banks. auto set_storage = [this](uint32_t address, const uint8_t *read, uint8_t *write) { // Don't allow the reserved null region to be modified. assert(region_map[address >> 8]); // Either set or apply a quick bit of testing as to the logic at play. auto ®ion = regions[region_map[address >> 8]]; if(read) read -= address; if(write) write -= address; if(!region.read) { region.read = read; region.write = write; } else { assert(region.read == read); assert(region.write == write); } }; // This is highly redundant, but decouples this step from the above. for(size_t c = 0; c < 0x800000; c += 0x100) { if(c < ram.size() - 128*1024) { set_storage(uint32_t(c), &ram[c], &ram[c]); } } uint8_t *const slow_ram = &ram[ram.size() - 0x20000]; for(size_t c = 0xe00000; c < 0xe20000; c += 0x100) { set_storage(uint32_t(c), &slow_ram[c - 0xe00000], &slow_ram[c - 0xe00000]); } for(uint32_t c = 0; c < uint32_t(rom_bank_count); ++c) { set_storage((first_rom_bank + c) << 16, &rom[c << 16], nullptr); } // Apply initial language/auxiliary state. [TODO: including shadowing register]. set_card_paging(); set_zero_page_paging(); set_main_paging(); } // MARK: - Memory banking. void set_language_card_paging() { } void set_card_paging() { } void set_zero_page_paging() { set_language_card_paging(); } void set_main_paging() { } private: Apple::II::AuxiliaryMemorySwitches auxiliary_switches_; Apple::II::LanguageCardSwitches language_card_; public: // Memory layout here is done via double indirection; the main loop should: // (i) use the top two bytes of the address to get an index from memory_map_; and // (ii) use that to index the memory_regions table. // // Pointers are eight bytes at the time of writing, so the extra level of indirection // reduces what would otherwise be a 1.25mb table down to not a great deal more than 64kb. std::array region_map; struct Region { uint8_t *write = nullptr; const uint8_t *read = nullptr; uint8_t flags = 0; enum Flag: uint8_t { IsShadowedE0 = 1 << 0, // i.e. writes should also be written to bank $e0, and costed appropriately. IsShadowedE1 = 1 << 1, // i.e. writes should also be written to bank $e1, and costed appropriately. IsShadowed = IsShadowedE0 | IsShadowedE1, Is1Mhz = 1 << 2, // Both reads and writes should be synchronised with the 1Mhz clock. IsIO = 1 << 3, // Indicates that this region should be checked for soft switches, registers, etc. }; }; std::array regions; // The assert above ensures that this is large enough; there's no // doctrinal reason for it to be whatever size it is now, just // adjust as required. }; #define MemoryMapRegion(map, address) map.regions[map.region_map[address >> 8]] #define MemoryMapRead(region, address, value) *value = region.read ? region.read[address] : 0xff; #define MemoryMapWrite(map, region, address, value) \ region.write[address] = *value; \ if(region.flags & (MemoryMap::Region::IsShadowed)) { \ const uint32_t shadowed_address = (address & 0xffff) + (uint32_t(0xe1 - (region.flags & MemoryMap::Region::IsShadowedE0)) << 16); \ map.regions[map.region_map[shadowed_address >> 8]].write[shadowed_address] = *value; \ } } } #endif /* MemoryMap_h */