// // TIA.cpp // Clock Signal // // Created by Thomas Harte on 28/01/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "TIA.hpp" #include using namespace Atari2600; namespace { const int cycles_per_line = 228; const int first_pixel_cycle = 68; const int sync_flag = 0x1; const int blank_flag = 0x2; uint8_t reverse_table[256]; } TIA::TIA(bool create_crt) : horizontal_counter_(0), pixels_start_location_(0), output_mode_(0), pixel_target_(nullptr), background_{0, 0}, background_half_mask_(0), horizontal_blank_extend_(false), collision_flags_(0) { if(create_crt) { crt_.reset(new Outputs::CRT::CRT(cycles_per_line * 2 + 1, 1, Outputs::CRT::DisplayType::NTSC60, 1)); crt_->set_output_device(Outputs::CRT::Television); set_output_mode(OutputMode::NTSC); } for(int c = 0; c < 256; c++) { reverse_table[c] = (uint8_t)( ((c & 0x01) << 7) | ((c & 0x02) << 5) | ((c & 0x04) << 3) | ((c & 0x08) << 1) | ((c & 0x10) >> 1) | ((c & 0x20) >> 3) | ((c & 0x40) >> 5) | ((c & 0x80) >> 7) ); } for(int c = 0; c < 64; c++) { bool has_playfield = c & (int)(CollisionType::Playfield); bool has_ball = c & (int)(CollisionType::Ball); bool has_player0 = c & (int)(CollisionType::Player0); bool has_player1 = c & (int)(CollisionType::Player1); bool has_missile0 = c & (int)(CollisionType::Missile0); bool has_missile1 = c & (int)(CollisionType::Missile1); uint8_t collision_registers[8]; collision_registers[0] = ((has_missile0 && has_player1) ? 0x80 : 0x00) | ((has_missile0 && has_player0) ? 0x40 : 0x00); collision_registers[1] = ((has_missile1 && has_player0) ? 0x80 : 0x00) | ((has_missile1 && has_player1) ? 0x40 : 0x00); collision_registers[2] = ((has_playfield && has_player0) ? 0x80 : 0x00) | ((has_ball && has_player0) ? 0x40 : 0x00); collision_registers[3] = ((has_playfield && has_player1) ? 0x80 : 0x00) | ((has_ball && has_player1) ? 0x40 : 0x00); collision_registers[4] = ((has_playfield && has_missile0) ? 0x80 : 0x00) | ((has_ball && has_missile0) ? 0x40 : 0x00); collision_registers[5] = ((has_playfield && has_missile1) ? 0x80 : 0x00) | ((has_ball && has_missile1) ? 0x40 : 0x00); collision_registers[6] = ((has_playfield && has_ball) ? 0x80 : 0x00); collision_registers[7] = ((has_player0 && has_player1) ? 0x80 : 0x00) | ((has_missile0 && has_missile1) ? 0x40 : 0x00); collision_flags_by_buffer_vaules_[c] = (collision_registers[0] >> 6) | (collision_registers[1] >> 4) | (collision_registers[2] >> 2) | (collision_registers[3] >> 0) | (collision_registers[4] << 2) | (collision_registers[5] << 4) | (collision_registers[6] << 6) | (collision_registers[7] << 8); // all priority modes show the background if nothing else is present colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::Background; // test 1 for standard priority: if there is a playfield or ball pixel, plot that colour if(has_playfield || has_ball) { colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] = (uint8_t)ColourIndex::PlayfieldBall; } // test 1 for score mode: if there is a ball pixel, plot that colour if(has_ball) { colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = (uint8_t)ColourIndex::PlayfieldBall; } // test 1 for on-top mode, test 2 for everbody else: if there is a player 1 or missile 1 pixel, plot that colour if(has_player1 || has_missile1) { colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::PlayerMissile1; } // in the right-hand side of score mode, the playfield has the same priority as player 1 if(has_playfield) { colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = (uint8_t)ColourIndex::PlayerMissile1; } // next test for everybody: if there is a player 0 or missile 0 pixel, plot that colour instead if(has_player0 || has_missile0) { colour_mask_by_mode_collision_flags_[(int)ColourMode::Standard][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][c] = colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::PlayerMissile0; } // if this is the left-hand side of score mode, the playfield has the same priority as player 0 if(has_playfield) { colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][c] = (uint8_t)ColourIndex::PlayerMissile0; } // a final test for 'on top' priority mode: if the playfield or ball are visible, prefer that colour to all others if(has_playfield || has_ball) { colour_mask_by_mode_collision_flags_[(int)ColourMode::OnTop][c] = (uint8_t)ColourIndex::PlayfieldBall; } } } TIA::TIA() : TIA(true) {} TIA::TIA(std::function line_end_function) : TIA(false) { line_end_function_ = line_end_function; } void TIA::set_output_mode(Atari2600::TIA::OutputMode output_mode) { Outputs::CRT::DisplayType display_type; if(output_mode == OutputMode::NTSC) { crt_->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "float phaseOffset = 6.283185308 * float(iPhase) / 13.0 + 5.074880441076923;" "return mix(float(y) / 14.0, step(1, iPhase) * cos(phase + phaseOffset), amplitude);" "}"); display_type = Outputs::CRT::DisplayType::NTSC60; } else { crt_->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "uint direction = iPhase & 1u;" "float phaseOffset = float(7u - direction) + (float(direction) - 0.5) * 2.0 * float(iPhase >> 1);" "phaseOffset *= 6.283185308 / 12.0;" "return mix(float(y) / 14.0, step(4, (iPhase + 2u) & 15u) * cos(phase + phaseOffset), amplitude);" "}"); display_type = Outputs::CRT::DisplayType::PAL50; } crt_->set_new_display_type(cycles_per_line * 2 + 1, display_type); /* speaker_->set_input_rate((float)(get_clock_rate() / 38.0));*/ } void TIA::run_for_cycles(int number_of_cycles) { // if part way through a line, definitely perform a partial, at most up to the end of the line if(horizontal_counter_) { int cycles = std::min(number_of_cycles, cycles_per_line - horizontal_counter_); output_for_cycles(cycles); number_of_cycles -= cycles; } // output full lines for as long as possible while(number_of_cycles >= cycles_per_line) { output_line(); number_of_cycles -= cycles_per_line; } // partly start a new line if necessary if(number_of_cycles) { output_for_cycles(number_of_cycles); } } void TIA::set_sync(bool sync) { output_mode_ = (output_mode_ & ~sync_flag) | (sync ? sync_flag : 0); } void TIA::set_blank(bool blank) { output_mode_ = (output_mode_ & ~blank_flag) | (blank ? blank_flag : 0); } void TIA::reset_horizontal_counter() { } int TIA::get_cycles_until_horizontal_blank(unsigned int from_offset) { return (cycles_per_line - (horizontal_counter_ + (int)from_offset) % cycles_per_line) % cycles_per_line; } void TIA::set_background_colour(uint8_t colour) { colour_palette_[(int)ColourIndex::Background] = colour; } void TIA::set_playfield(uint16_t offset, uint8_t value) { assert(offset >= 0 && offset < 3); switch(offset) { case 0: background_[1] = (background_[1] & 0x0ffff) | ((uint32_t)reverse_table[value & 0xf0] << 16); background_[0] = (background_[0] & 0xffff0) | (uint32_t)(value >> 4); break; case 1: background_[1] = (background_[1] & 0xf00ff) | ((uint32_t)value << 8); background_[0] = (background_[0] & 0xff00f) | ((uint32_t)reverse_table[value] << 4); break; case 2: background_[1] = (background_[1] & 0xfff00) | reverse_table[value]; background_[0] = (background_[0] & 0x00fff) | ((uint32_t)value << 12); break; } } void TIA::set_playfield_control_and_ball_size(uint8_t value) { background_half_mask_ = value & 1; switch(value & 6) { case 0: playfield_priority_ = PlayfieldPriority::Standard; break; case 2: playfield_priority_ = PlayfieldPriority::Score; break; case 4: case 6: playfield_priority_ = PlayfieldPriority::OnTop; break; } ball_.size = 1 << ((value >> 4)&3); } void TIA::set_playfield_ball_colour(uint8_t colour) { colour_palette_[(int)ColourIndex::PlayfieldBall] = colour; } void TIA::set_player_number_and_size(int player, uint8_t value) { assert(player >= 0 && player < 2); int size = 0; switch(value & 7) { case 0: case 1: case 2: case 3: case 4: player_[player].copy_flags = value & 7; break; case 5: size = 1; player_[player].copy_flags = 0; break; case 6: player_[player].copy_flags = 6; break; case 7: size = 2; player_[player].copy_flags = 0; break; } missile_[player].size = 1 << ((value >> 4)&3); missile_[player].copy_flags = player_[player].copy_flags; player_[player].adder = 4 >> size; } void TIA::set_player_graphic(int player, uint8_t value) { assert(player >= 0 && player < 2); player_[player].graphic[1] = value; player_[player^1].graphic[0] = player_[player^1].graphic[1]; if(player) ball_.enabled[0] = ball_.enabled[1]; } void TIA::set_player_reflected(int player, bool reflected) { assert(player >= 0 && player < 2); player_[player].reverse_mask = reflected ? 7 : 0; } void TIA::set_player_delay(int player, bool delay) { assert(player >= 0 && player < 2); player_[player].graphic_index = delay ? 0 : 1; } void TIA::set_player_position(int player) { assert(player >= 0 && player < 2); // players have an extra clock of delay before output and don't display upon reset; // both aims are achieved by setting to -1 because: (i) it causes the clock to be // one behind its real hardware value, creating the extra delay; and (ii) the player // code is written to start a draw upon wraparound from 159 to 0, so -1 is the // correct option rather than 159. player_[player].position = -1; } void TIA::set_player_motion(int player, uint8_t motion) { assert(player >= 0 && player < 2); player_[player].motion = (motion >> 4)&0xf; } void TIA::set_player_missile_colour(int player, uint8_t colour) { assert(player >= 0 && player < 2); colour_palette_[(int)ColourIndex::PlayerMissile0 + player] = colour; } void TIA::set_missile_enable(int missile, bool enabled) { assert(missile >= 0 && missile < 2); missile_[missile].enabled = enabled; } void TIA::set_missile_position(int missile) { assert(missile >= 0 && missile < 2); missile_[missile].position = 0; } void TIA::set_missile_position_to_player(int missile, bool lock) { assert(missile >= 0 && missile < 2); // TODO: implement this correctly; should be triggered by player counter hitting the appropriate point, and // use additional storage position for enabled if(missile_[missile].locked_to_player && !lock) missile_[missile].position = player_[missile].position + 1 + 16/player_[missile].adder; missile_[missile].locked_to_player = lock; } void TIA::set_missile_motion(int missile, uint8_t motion) { assert(missile >= 0 && missile < 2); missile_[missile].motion = (motion >> 4)&0xf; } void TIA::set_ball_enable(bool enabled) { ball_.enabled[1] = enabled; } void TIA::set_ball_delay(bool delay) { ball_.enabled_index = delay ? 0 : 1; } void TIA::set_ball_position() { ball_.position = 0; // setting the ball position also triggers a draw ball_.reset_pixels(); } void TIA::set_ball_motion(uint8_t motion) { ball_.motion = (motion >> 4) & 0xf; } void TIA::move() { horizontal_blank_extend_ = true; player_[0].is_moving = player_[1].is_moving = missile_[0].is_moving = missile_[1].is_moving = ball_.is_moving = true; player_[0].motion_step = player_[1].motion_step = missile_[0].motion_step = missile_[1].motion_step = ball_.motion_step = 15; player_[0].motion_time = player_[1].motion_time = missile_[0].motion_time = missile_[1].motion_time = ball_.motion_time = (horizontal_counter_ + 3) & ~3; } void TIA::clear_motion() { player_[0].motion = player_[1].motion = missile_[0].motion = missile_[1].motion = ball_.motion = 0; } uint8_t TIA::get_collision_flags(int offset) { return (uint8_t)((collision_flags_ >> (offset << 1)) << 6) & 0xc0; } void TIA::clear_collision_flags() { collision_flags_ = 0; } void TIA::output_for_cycles(int number_of_cycles) { /* Line timing is oriented around 0 being the start of the right-hand side vertical blank; a wsync synchronises the CPU to horizontal_counter_ = 0. All timing below is in terms of the NTSC colour clock. Therefore, each line is composed of: 16 cycles: blank ; -> 16 16 cycles: sync ; -> 32 16 cycles: colour burst ; -> 48 20 cycles: blank ; -> 68 8 cycles: blank or pixels, depending on whether the blank extend bit is set 152 cycles: pixels */ int output_cursor = horizontal_counter_; horizontal_counter_ += number_of_cycles; if(!output_cursor) { if(line_end_function_) line_end_function_(collision_buffer_); memset(collision_buffer_, 0, sizeof(collision_buffer_)); horizontal_blank_extend_ = false; ball_.motion_time %= 228; player_[0].motion_time %= 228; player_[1].motion_time %= 228; missile_[0].motion_time %= 228; missile_[1].motion_time %= 228; } // accumulate an OR'd version of the output into the collision buffer int latent_start = output_cursor + 4; int latent_end = horizontal_counter_ + 4; draw_playfield(latent_start, latent_end); draw_object(player_[0], (uint8_t)CollisionType::Player0, output_cursor, horizontal_counter_); draw_object(player_[1], (uint8_t)CollisionType::Player1, output_cursor, horizontal_counter_); draw_object(missile_[0], (uint8_t)CollisionType::Missile0, output_cursor, horizontal_counter_); draw_object(missile_[1], (uint8_t)CollisionType::Missile1, output_cursor, horizontal_counter_); draw_object(ball_, (uint8_t)CollisionType::Ball, output_cursor, horizontal_counter_); // convert to television signals #define Period(function, target) \ if(output_cursor < target) \ { \ if(horizontal_counter_ <= target) \ { \ if(crt_) crt_->function((unsigned int)((horizontal_counter_ - output_cursor) * 2)); \ horizontal_counter_ %= cycles_per_line; \ return; \ } \ else \ { \ if(crt_) crt_->function((unsigned int)((target - output_cursor) * 2)); \ output_cursor = target; \ } \ } switch(output_mode_) { default: Period(output_blank, 16) Period(output_sync, 32) Period(output_default_colour_burst, 48) Period(output_blank, 68) break; case sync_flag: case sync_flag | blank_flag: Period(output_sync, 16) Period(output_blank, 32) Period(output_default_colour_burst, 48) Period(output_sync, 228) break; } #undef Period if(output_mode_ & blank_flag) { if(pixel_target_) { output_pixels(pixels_start_location_, output_cursor); if(crt_) crt_->output_data((unsigned int)(output_cursor - pixels_start_location_) * 2, 2); pixel_target_ = nullptr; pixels_start_location_ = 0; } int duration = std::min(228, horizontal_counter_) - output_cursor; if(crt_) crt_->output_blank((unsigned int)(duration * 2)); } else { if(!pixels_start_location_ && crt_) { pixels_start_location_ = output_cursor; pixel_target_ = crt_->allocate_write_area(160); } // convert that into pixels if(pixel_target_) output_pixels(output_cursor, horizontal_counter_); // accumulate collision flags while(output_cursor < horizontal_counter_) { collision_flags_ |= collision_flags_by_buffer_vaules_[collision_buffer_[output_cursor - first_pixel_cycle]]; output_cursor++; } if(horizontal_counter_ == cycles_per_line && crt_) { crt_->output_data((unsigned int)(output_cursor - pixels_start_location_) * 2, 2); pixel_target_ = nullptr; pixels_start_location_ = 0; } } horizontal_counter_ %= cycles_per_line; } void TIA::output_pixels(int start, int end) { start = std::max(start, pixels_start_location_); int target_position = start - pixels_start_location_; if(start < first_pixel_cycle+8 && horizontal_blank_extend_) { while(start < end && start < first_pixel_cycle+8) { pixel_target_[target_position] = 0; start++; target_position++; } } if(playfield_priority_ == PlayfieldPriority::Score) { while(start < end && start < first_pixel_cycle + 80) { uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle]; pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreLeft][buffer_value]]; start++; target_position++; } while(start < end) { uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle]; pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[(int)ColourMode::ScoreRight][buffer_value]]; start++; target_position++; } } else { int table_index = (int)((playfield_priority_ == PlayfieldPriority::Standard) ? ColourMode::Standard : ColourMode::OnTop); while(start < end) { uint8_t buffer_value = collision_buffer_[start - first_pixel_cycle]; pixel_target_[target_position] = colour_palette_[colour_mask_by_mode_collision_flags_[table_index][buffer_value]]; start++; target_position++; } } } void TIA::output_line() { switch(output_mode_) { default: // TODO: optimise special case output_for_cycles(cycles_per_line); break; case sync_flag: case sync_flag | blank_flag: if(crt_) { crt_->output_sync(32); crt_->output_blank(32); crt_->output_sync(392); } horizontal_blank_extend_ = false; break; case blank_flag: if(crt_) { crt_->output_blank(32); crt_->output_sync(32); crt_->output_default_colour_burst(32); crt_->output_blank(360); } horizontal_blank_extend_ = false; break; } } #pragma mark - Playfield output void TIA::draw_playfield(int start, int end) { // don't do anything if this window ends too early if(end < first_pixel_cycle) return; // clip to drawable bounds start = std::max(start, first_pixel_cycle); end = std::min(end, 228); // proceed along four-pixel boundaries, plotting four pixels at a time int aligned_position = (start + 3)&~3; while(aligned_position < end) { int offset = (aligned_position - first_pixel_cycle) >> 2; uint32_t value = ((background_[(offset/20)&background_half_mask_] >> (offset%20))&1) * 0x01010101; *(uint32_t *)&collision_buffer_[aligned_position - first_pixel_cycle] |= value; aligned_position += 4; } } #pragma mark - Motion template void TIA::perform_motion_step(T &object) { if((object.motion_step ^ (object.motion ^ 8)) == 0xf) object.is_moving = false; else { if(object.position == 159) object.reset_pixels(); else if(object.position == 15 && object.copy_flags&1) object.reset_pixels(); else if(object.position == 31 && object.copy_flags&2) object.reset_pixels(); else if(object.position == 63 && object.copy_flags&4) object.reset_pixels(); else object.skip_pixels(1); object.position = (object.position + 1) % 160; object.motion_step --; object.motion_time += 4; } } template void TIA::perform_border_motion(T &object, int start, int end) { while(object.is_moving && object.motion_time < end) perform_motion_step(object); } template void TIA::draw_object(T &object, const uint8_t collision_identity, int start, int end) { int first_pixel = first_pixel_cycle - 4 + (horizontal_blank_extend_ ? 8 : 0); // movement works across the entire screen, so do work that falls outside of the pixel area if(start < first_pixel) { perform_border_motion(object, start, std::max(end, first_pixel)); } // don't continue to do any drawing if this window ends too early if(end < first_pixel) return; if(start < first_pixel) start = first_pixel; if(start >= end) return; // perform the visible part of the line, if any if(start < 224) { draw_object_visible(object, collision_identity, start - first_pixel_cycle + 4, std::min(end - first_pixel_cycle + 4, 160)); } // move further if required if(object.is_moving && end >= 224 && object.motion_time < end) { perform_motion_step(object); } } template void TIA::draw_object_visible(T &object, const uint8_t collision_identity, int start, int end) { // perform a miniature event loop on (i) triggering draws; (ii) drawing; and (iii) motion int next_motion_time = object.motion_time - first_pixel_cycle + 4; while(start < end) { int next_event_time = end; // is the next event a movement tick? if(object.is_moving && next_motion_time < next_event_time) { next_event_time = next_motion_time; } // is the next event a graphics trigger? int next_copy = 160; if(object.copy_flags) { if(object.position < 16 && object.copy_flags&1) { next_copy = 16; } else if(object.position < 32 && object.copy_flags&2) { next_copy = 32; } else if(object.position < 64 && object.copy_flags&4) { next_copy = 64; } } int next_copy_time = start + next_copy - object.position; if(next_copy_time < next_event_time) next_event_time = next_copy_time; // the decision is to progress by length const int length = next_event_time - start; // TODO: the problem with this is that it uses the enabled/pixel state of each object four cycles early; // an appropriate solution would probably be to capture the drawing request into a queue and honour them outside // this loop, clipped to the real output parameters. Assuming all state consumed by draw_pixels is captured, // and mutated now then also queueing resets and skips shouldn't be necessary. object.enqueue_pixels(&collision_buffer_[start], length, collision_identity); // the next interesting event is after next_event_time cycles, so progress object.position = (object.position + length) % 160; start = next_event_time; // if the event is a motion tick, apply if(object.is_moving && start == next_motion_time) { perform_motion_step(object); next_motion_time += 4; } // if it's a draw trigger, trigger a draw else if(start == next_copy_time) { object.reset_pixels(); } } }