// // ScanTargetVertexArrayAttributs.cpp // Clock Signal // // Created by Thomas Harte on 11/11/2018. // Copyright © 2018 Thomas Harte. All rights reserved. // #include "ScanTarget.hpp" #include using namespace Outputs::Display::OpenGL; void Outputs::Display::OpenGL::ScanTarget::set_uniforms(ShaderType type, Shader &target) { // Slightly over-amping rowHeight here is a cheap way to make sure that lines // converge even allowing for the fact that they may not be spaced by exactly // the expected distance. Cf. the stencil-powered logic for making sure all // pixels are painted only exactly once per field. switch(type) { default: break; case ShaderType::Conversion: target.set_uniform("rowHeight", GLfloat(1.05f / modals_.expected_vertical_lines)); target.set_uniform("scale", GLfloat(modals_.output_scale.x), GLfloat(modals_.output_scale.y)); target.set_uniform("phaseOffset", GLfloat(modals_.input_data_tweaks.phase_linked_luminance_offset)); break; } } void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) { #define rt_offset_of(field, source) (reinterpret_cast(&source.field) - reinterpret_cast(&source)) // test_scan and test_line are here so that the byte offsets that need to be // calculated inside a loop can be done so validly; offsetof requires constant arguments. Scan test_scan; Line test_line; switch(type) { case ShaderType::Composition: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "DataX", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(rt_offset_of(scan.end_points[c].data_offset, test_scan)), 1); target.enable_vertex_attribute_with_pointer( prefix + "Clock", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(rt_offset_of(scan.end_points[c].cycles_since_end_of_horizontal_retrace, test_scan)), 1); } target.enable_vertex_attribute_with_pointer( "dataY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, data_y)), 1); target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, line)), 1); break; case ShaderType::Conversion: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(rt_offset_of(end_points[c].x, test_line)), 1); target.enable_vertex_attribute_with_pointer( prefix + "Clock", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(rt_offset_of(end_points[c].cycles_since_end_of_horizontal_retrace, test_line)), 1); target.enable_vertex_attribute_with_pointer( prefix + "CompositeAngle", 1, GL_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(rt_offset_of(end_points[c].composite_angle, test_line)), 1); } target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, line)), 1); target.enable_vertex_attribute_with_pointer( "lineCompositeAmplitude", 1, GL_UNSIGNED_BYTE, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, composite_amplitude)), 1); break; } #undef rt_offset_of } std::unique_ptr ScanTarget::composition_shader() const { const std::string vertex_shader = "#version 150\n" "in float startDataX;" "in float startClock;" "in float endDataX;" "in float endClock;" "in float dataY;" "in float lineY;" "out vec2 textureCoordinate;" "uniform usampler2D textureName;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY + 0.5) / textureSize(textureName, 0);" "vec2 eyePosition = vec2(mix(startClock, endClock, lateral), lineY + longitudinal) / vec2(2048.0, 2048.0);" "gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);" "}"; std::string fragment_shader = "#version 150\n" "out vec4 fragColour;" "in vec2 textureCoordinate;" "uniform usampler2D textureName;" "void main(void) {"; switch(modals_.input_data_type) { case InputDataType::Luminance1: fragment_shader += "fragColour = textureLod(textureName, textureCoordinate, 0).rrrr;"; break; case InputDataType::Luminance8: fragment_shader += "fragColour = textureLod(textureName, textureCoordinate, 0).rrrr / vec4(255.0);"; break; case InputDataType::PhaseLinkedLuminance8: case InputDataType::Luminance8Phase8: case InputDataType::Red8Green8Blue8: fragment_shader += "fragColour = textureLod(textureName, textureCoordinate, 0) / vec4(255.0);"; break; case InputDataType::Red1Green1Blue1: fragment_shader += "fragColour = vec4(textureLod(textureName, textureCoordinate, 0).rrr & uvec3(4u, 2u, 1u), 1.0);"; break; case InputDataType::Red2Green2Blue2: fragment_shader += "uint textureValue = textureLod(textureName, textureCoordinate, 0).r;" "fragColour = vec4(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u), 3.0) / 3.0;"; break; case InputDataType::Red4Green4Blue4: fragment_shader += "uvec2 textureValue = textureLod(textureName, textureCoordinate, 0).rg;" "fragColour = vec4(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0, 1.0);"; break; } return std::unique_ptr(new Shader( vertex_shader, fragment_shader + "}", { "startDataX", "startClock", "endDataX", "endClock", "dataY", "lineY", } )); } std::unique_ptr ScanTarget::conversion_shader() const { // Compose a vertex shader. If the display type is RGB, generate just the proper // geometry position, plus a solitary textureCoordinate. // // If the display type is anything other than RGB, also produce composite // angle and 1/composite amplitude as outputs. // // If the display type is composite colour, generate four textureCoordinates, // spanning a range of -135, -45, +45, +135 degrees. // // If the display type is S-Video, generate three textureCoordinates, at // -45, 0, +45. std::string vertex_shader = "#version 150\n" "uniform vec2 scale;" "uniform float rowHeight;" "in vec2 startPoint;" "in vec2 endPoint;" "in float startClock;" "in float startCompositeAngle;" "in float endClock;" "in float endCompositeAngle;" "in float lineY;" "in float lineCompositeAmplitude;" "uniform sampler2D textureName;" "uniform vec2 origin;" "uniform vec2 size;"; std::string fragment_shader = "#version 150\n" "uniform sampler2D textureName;" "out vec4 fragColour;"; if(modals_.display_type != DisplayType::RGB) { vertex_shader += "out float compositeAngle;" "out float compositeAmplitude;" "out float oneOverCompositeAmplitude;" "uniform float textureCoordinateOffsets[4];" "uniform float angleOffsets[4];"; fragment_shader += "in float compositeAngle;" "in float compositeAmplitude;" "in float oneOverCompositeAmplitude;" "uniform vec4 compositeAngleOffsets;"; } switch(modals_.display_type){ case DisplayType::RGB: case DisplayType::CompositeMonochrome: vertex_shader += "out vec2 textureCoordinate;"; fragment_shader += "in vec2 textureCoordinate;"; break; case DisplayType::CompositeColour: case DisplayType::SVideo: vertex_shader += "out vec2 textureCoordinates[4];"; fragment_shader += "in vec2 textureCoordinates[4];"; break; } // Add the code to generate a proper output position; this applies to all display types. vertex_shader += "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "vec2 centrePoint = mix(startPoint, vec2(endPoint.x, startPoint.y), lateral) / scale;" "vec2 height = normalize(vec2(endPoint.x, startPoint.y) - startPoint).yx * (longitudinal - 0.5) * rowHeight;" "vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);" "gl_Position = vec4(eyePosition, 0.0, 1.0);"; // For everything other than RGB, calculate the two composite outputs. if(modals_.display_type != DisplayType::RGB) { vertex_shader += "compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;" "compositeAmplitude = lineCompositeAmplitude / 255.0;" "oneOverCompositeAmplitude = mix(0.0, 255.0 / lineCompositeAmplitude, step(0.01, lineCompositeAmplitude));"; } // For RGB and monochrome composite, generate the single texture coordinate; otherwise generate either three // or four depending on the type of decoding to apply. switch(modals_.display_type){ case DisplayType::RGB: case DisplayType::CompositeMonochrome: vertex_shader += "textureCoordinate = vec2(mix(startClock, endClock, lateral), lineY + 0.5) / textureSize(textureName, 0);"; break; case DisplayType::CompositeColour: case DisplayType::SVideo: vertex_shader += "float centreClock = mix(startClock, endClock, lateral);" "textureCoordinates[0] = vec2(centreClock + textureCoordinateOffsets[0], lineY + 0.5) / textureSize(textureName, 0);" "textureCoordinates[1] = vec2(centreClock + textureCoordinateOffsets[1], lineY + 0.5) / textureSize(textureName, 0);" "textureCoordinates[2] = vec2(centreClock + textureCoordinateOffsets[2], lineY + 0.5) / textureSize(textureName, 0);" "textureCoordinates[3] = vec2(centreClock + textureCoordinateOffsets[3], lineY + 0.5) / textureSize(textureName, 0);"; break; } vertex_shader += "}"; // Compose a fragment shader. if(modals_.display_type != DisplayType::RGB) { fragment_shader += "uniform mat3 lumaChromaToRGB;" "uniform mat3 rgbToLumaChroma;"; if(modals_.display_type == DisplayType::SVideo) { fragment_shader += "vec2 svideo_sample(vec2 coordinate, float angle) {"; } else { fragment_shader += "float composite_sample(vec2 coordinate, float angle) {"; } const bool is_svideo = modals_.display_type == DisplayType::SVideo; switch(modals_.input_data_type) { case InputDataType::Luminance1: case InputDataType::Luminance8: // Easy, just copy across. fragment_shader += is_svideo ? "return vec2(textureLod(textureName, coordinate, 0).r, 0.0);" : "return textureLod(textureName, coordinate, 0).r;"; break; case InputDataType::PhaseLinkedLuminance8: fragment_shader += "uint iPhase = uint((angle * 2.0 / 3.141592654) ) & 3u;"; fragment_shader += is_svideo ? "return vec2(textureLod(textureName, coordinate, 0)[iPhase], 0.0);" : "return textureLod(textureName, coordinate, 0)[iPhase];"; break; case InputDataType::Luminance8Phase8: fragment_shader += "vec2 yc = textureLod(textureName, coordinate, 0).rg;" "float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;" "float rawChroma = step(yc.y, 0.75) * cos(angle + phaseOffset);"; fragment_shader += is_svideo ? "return vec2(yc.x, rawChroma);" : "return mix(yc.x, rawChroma, compositeAmplitude);"; break; case InputDataType::Red1Green1Blue1: case InputDataType::Red2Green2Blue2: case InputDataType::Red4Green4Blue4: case InputDataType::Red8Green8Blue8: fragment_shader += "vec3 colour = rgbToLumaChroma * textureLod(textureName, coordinate, 0).rgb;" "vec2 quadrature = vec2(cos(angle), sin(angle));"; fragment_shader += is_svideo ? "return vec2(colour.r, dot(quadrature, colour.gb));" : "return mix(colour.r, dot(quadrature, colour.gb), compositeAmplitude);"; break; } fragment_shader += "}"; } fragment_shader += "void main(void) {" "vec3 fragColour3;"; switch(modals_.display_type) { case DisplayType::RGB: fragment_shader += "fragColour3 = textureLod(textureName, textureCoordinate, 0).rgb;"; break; case DisplayType::SVideo: fragment_shader += // Sample four times over, at proper angle offsets. "vec2 samples[4] = vec2[4](" "svideo_sample(textureCoordinates[0], angles[0])," "svideo_sample(textureCoordinates[1], angles[1])," "svideo_sample(textureCoordinates[2], angles[2])," "svideo_sample(textureCoordinates[3], angles[3])" ");" "vec4 chrominances = vec4(" "samples[0].y," "samples[1].y," "samples[2].y," "samples[3].y" ");" // Split and average chrominance. "vec2 channels = vec2(" "dot(cos(angles), chrominances)," "dot(sin(angles), chrominances)" ") * vec2(0.25);" // Apply a colour space conversion to get RGB. "fragColour3 = lumaChromaToRGB * vec3(samples[1].x, channels);"; break; case DisplayType::CompositeColour: fragment_shader += "vec4 angles = compositeAngle + compositeAngleOffsets;" // Sample four times over, at proper angle offsets. "vec4 samples = vec4(" "composite_sample(textureCoordinates[0], angles.x)," "composite_sample(textureCoordinates[1], angles.y)," "composite_sample(textureCoordinates[2], angles.z)," "composite_sample(textureCoordinates[3], angles.w)" ");" // Compute a luminance for use if there's no colour information, now, before // modifying samples. "float mono_luminance = dot(samples, vec4(0.15, 0.35, 0.35, 0.15));" // TODO: figure out proper coefficients. // Take the average to calculate luminance, then subtract that from all four samples to // give chrominance. "float luminance = dot(samples, vec4(0.25));" // Split and average chrominance. // "vec4 chrominances = vec4(" // "samples[0].y - luminances[0]," // "samples[0].z - luminances[1]," // "samples[0].w - luminances[2]," // "samples[1].x - luminances[3]" // ");" // "vec4 chrominance_angles = vec4(angles[0].yzw, angles[1].x);" // "vec2 channels = vec2(" // "dot(cos(chrominance_angles), chrominances)," // "dot(sin(chrominance_angles), chrominances)" // ") * vec2(0.125 * oneOverCompositeAmplitude);" "vec2 channels = vec2(0.0);" // Apply a colour space conversion to get RGB. "fragColour3 = mix(" "lumaChromaToRGB * vec3(luminance / (1.0 - compositeAmplitude), channels)," "vec3(mono_luminance)," "step(oneOverCompositeAmplitude, 0.01)" ");"; break; case DisplayType::CompositeMonochrome: fragment_shader += "fragColour3 = vec3(composite_sample(textureCoordinate, compositeAngle));"; break; } // Apply a brightness adjustment if requested. if(fabs(modals_.brightness - 1.0f) > 0.05f) { fragment_shader += "fragColour3 = fragColour3 * " + std::to_string(modals_.brightness) + ";"; } // Apply a gamma correction if required. if(fabs(output_gamma_ - modals_.intended_gamma) > 0.05f) { const float gamma_ratio = output_gamma_ / modals_.intended_gamma; fragment_shader += "fragColour3 = pow(fragColour3, vec3(" + std::to_string(gamma_ratio) + "));"; } fragment_shader += "fragColour = vec4(fragColour3, 0.64);" "}"; const auto shader = new Shader( vertex_shader, fragment_shader, { "startPoint", "endPoint", "startClock", "endClock", "lineY", "lineCompositeAmplitude", "startCompositeAngle", "endCompositeAngle" } ); // If this isn't an RGB or composite colour shader, set the proper colour space. if(modals_.display_type != DisplayType::RGB) { const float clocks_per_angle = float(modals_.cycles_per_line) * float(modals_.colour_cycle_denominator) / float(modals_.colour_cycle_numerator); GLfloat texture_offsets[4]; GLfloat angles[4]; for(int c = 0; c < 4; ++c) { GLfloat angle = (GLfloat(c) - 1.5f) / 4.0f; texture_offsets[c] = angle * clocks_per_angle; angles[c] = GLfloat(angle * 2.0f * M_PI); } shader->set_uniform("textureCoordinateOffsets", 1, 4, texture_offsets); shader->set_uniform("compositeAngleOffsets", 4, 1, angles); switch(modals_.composite_colour_space) { case ColourSpace::YIQ: { const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f}; const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f}; shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB); shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ); } break; case ColourSpace::YUV: { const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f}; const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f}; shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB); shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV); } break; } } return std::unique_ptr(shader); }