// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include "CRTOpenGL.hpp" #include #include #include using namespace Outputs::CRT; void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator) { _openGL_output_builder->set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator); const unsigned int syncCapacityLineChargeThreshold = 2; const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234 const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid // To quote: // // "retrace interval; The interval of time for the return of the blanked scanning beam of // a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs // for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV." _time_multiplier = (2000 + cycles_per_line - 1) / cycles_per_line; // store fundamental display configuration properties _height_of_display = height_of_display; _cycles_per_line = cycles_per_line * _time_multiplier; // generate timing values implied by the given arbuments _sync_capacitor_charge_threshold = (int)(syncCapacityLineChargeThreshold * _cycles_per_line); // create the two flywheels _horizontal_flywheel = std::unique_ptr(new Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6)); _vertical_flywheel = std::unique_ptr(new Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line)); // figure out the divisor necessary to get the horizontal flywheel into a 16-bit range unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor); _vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor)); _openGL_output_builder->set_timing(_cycles_per_line, _height_of_display, _horizontal_flywheel->get_scan_period(), _vertical_flywheel->get_scan_period(), _vertical_flywheel_output_divider); } void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType) { switch(displayType) { case DisplayType::PAL50: set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4); break; case DisplayType::NTSC60: set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2); break; } } CRT::CRT(unsigned int common_output_divisor) : _sync_capacitor_charge_level(0), _is_receiving_sync(false), _sync_period(0), _common_output_divisor(common_output_divisor), _is_writing_composite_run(false), _delegate(nullptr), _frames_since_last_delegate_call(0) {} CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) : CRT(common_output_divisor) { _openGL_output_builder = std::unique_ptr(new OpenGLOutputBuilder(buffer_depth)); set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator); } CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) : CRT(common_output_divisor) { _openGL_output_builder = std::unique_ptr(new OpenGLOutputBuilder(buffer_depth)); set_new_display_type(cycles_per_line, displayType); } #pragma mark - Sync loop Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced); } Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced); } #define output_position_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 0]) #define output_position_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 2]) #define output_tex_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 0]) #define output_tex_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 2]) #define output_lateral(v) next_run[OutputVertexSize*v + OutputVertexOffsetOfLateral] #define source_input_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 0]) #define source_input_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 2]) #define source_output_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 0]) #define source_output_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 2]) #define source_phase(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 0] #define source_amplitude(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 1] #define source_offset(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 2] #define source_phase_time(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseTime]) void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y) { number_of_cycles *= _time_multiplier; bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data)); while(number_of_cycles) { unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event; Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event); Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); hsync_requested = false; vsync_requested = false; bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace()); uint8_t *next_run = nullptr; if(is_output_segment) { next_run = (_openGL_output_builder->get_output_device() == Monitor) ? _openGL_output_builder->get_next_output_run() : _openGL_output_builder->get_next_source_run(); } // Vertex output is arranged for triangle strips, as: // // 2 [4/5] // // [0/1] 3 if(next_run) { if(_openGL_output_builder->get_output_device() == Monitor) { // set the type, initial raster position and type of this run output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position(); output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider); // output_timestamp(0) = output_timestamp(1) = output_timestamp(2) = _openGL_output_builder->get_current_field_time(); output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = tex_x; // these things are constants across the line so just throw them out now output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = output_tex_y(3) = output_tex_y(4) = output_tex_y(5) = tex_y; output_lateral(0) = output_lateral(1) = output_lateral(3) = 0; output_lateral(2) = output_lateral(4) = output_lateral(5) = 1; // output_frame_id(0) = output_frame_id(1) = output_frame_id(2) = output_frame_id(3) = output_frame_id(4) = output_frame_id(5) = (uint8_t)_openGL_output_builder->get_current_field(); } else { source_input_position_x(0) = tex_x; source_input_position_y(0) = source_input_position_y(1) = tex_y; source_output_position_x(0) = (uint16_t)_horizontal_flywheel->get_current_output_position(); source_output_position_y(0) = source_output_position_y(1) = _openGL_output_builder->get_composite_output_y(); source_phase(0) = source_phase(1) = _colour_burst_phase; source_amplitude(0) = source_amplitude(1) = _colour_burst_amplitude; source_phase_time(0) = source_phase_time(1) = _colour_burst_time; source_offset(0) = 0; source_offset(1) = 255; } } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; // _openGL_output_builder->add_to_field_time(next_run_length); // either charge or deplete the vertical retrace capacitor (making sure it stops at 0) if(vsync_charging) _sync_capacitor_charge_level += next_run_length; else _sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0); // react to the incoming event... _horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None); _vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None); if(next_run) { // if this is a data run then advance the buffer pointer if(type == Scan::Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider); if(_openGL_output_builder->get_output_device() == Monitor) { // store the final raster position output_position_x(3) = output_position_x(4) = output_position_x(5) = (uint16_t)_horizontal_flywheel->get_current_output_position(); output_position_y(3) = output_position_y(4) = output_position_y(5) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider); // output_timestamp(3) = output_timestamp(4) = output_timestamp(5) = _openGL_output_builder->get_current_field_time(); output_tex_x(3) = output_tex_x(4) = output_tex_x(5) = tex_x; _openGL_output_builder->complete_output_run(6); } else { source_input_position_x(1) = tex_x; source_output_position_x(1) = (uint16_t)_horizontal_flywheel->get_current_output_position(); _openGL_output_builder->complete_source_run(); } } // if this is horizontal retrace then advance the output line counter and bookend an output run if(_openGL_output_builder->get_output_device() == Television) { Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None; if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event; if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event; bool needs_endpoint = (honoured_event == Flywheel::SyncEvent::StartRetrace && _is_writing_composite_run) || (honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace()); if(needs_endpoint) { uint8_t *next_run = _openGL_output_builder->get_next_output_run(); output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position(); output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider); // output_timestamp(0) = output_timestamp(1) = output_timestamp(2) = _openGL_output_builder->get_current_field_time(); output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position(); output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = _openGL_output_builder->get_composite_output_y(); output_lateral(0) = 0; output_lateral(1) = _is_writing_composite_run ? 1 : 0; output_lateral(2) = 1; // output_frame_id(0) = output_frame_id(1) = output_frame_id(2) = (uint8_t)_openGL_output_builder->get_current_field(); _openGL_output_builder->complete_output_run(3); _is_writing_composite_run ^= true; } if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) { _openGL_output_builder->increment_composite_output_y(); } } // if this is vertical retrace then adcance a field if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) { if(_delegate) { _frames_since_last_delegate_call++; if(_frames_since_last_delegate_call == 100) { _delegate->crt_did_end_batch_of_frames(this, _frames_since_last_delegate_call, _vertical_flywheel->get_and_reset_number_of_surprises()); _frames_since_last_delegate_call = 0; } } // _openGL_output_builder->increment_field(); } } } #undef output_position_x #undef output_position_y #undef output_tex_x #undef output_tex_y #undef output_lateral #undef input_input_position_x #undef input_input_position_y #undef input_output_position_x #undef input_output_position_y #undef input_phase #undef input_amplitude #undef input_phase_age #pragma mark - stream feeding methods void CRT::output_scan(const Scan *const scan) { const bool this_is_sync = (scan->type == Scan::Type::Sync); const bool is_trailing_edge = (_is_receiving_sync && !this_is_sync); const bool is_leading_edge = (!_is_receiving_sync && this_is_sync); _is_receiving_sync = this_is_sync; // This introduces a blackout period close to the expected vertical sync point in which horizontal syncs are not // recognised, effectively causing the horizontal flywheel to freewheel during that period. This attempts to seek // the problem that vertical sync otherwise often starts halfway through a scanline, which confuses the horizontal // flywheel. I'm currently unclear whether this is an accurate solution to this problem. const bool hsync_requested = is_leading_edge && !_vertical_flywheel->is_near_expected_sync(); const bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold); // simplified colour burst logic: if it's within the back porch we'll take it if(scan->type == Scan::Type::ColourBurst) { if(_horizontal_flywheel->get_current_time() < (_horizontal_flywheel->get_standard_period() * 12) >> 6) { _colour_burst_time = (uint16_t)_horizontal_flywheel->get_current_time(); _colour_burst_phase = scan->phase; _colour_burst_amplitude = scan->amplitude; } } // TODO: inspect raw data for potential colour burst if required _sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0; advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y); } /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(unsigned int number_of_cycles) { Scan scan{ .type = Scan::Type::Sync, .number_of_cycles = number_of_cycles }; output_scan(&scan); } void CRT::output_blank(unsigned int number_of_cycles) { Scan scan { .type = Scan::Type::Blank, .number_of_cycles = number_of_cycles }; output_scan(&scan); } void CRT::output_level(unsigned int number_of_cycles) { Scan scan { .type = Scan::Type::Level, .number_of_cycles = number_of_cycles, .tex_x = _openGL_output_builder->get_last_write_x_posiiton(), .tex_y = _openGL_output_builder->get_last_write_y_posiiton() }; output_scan(&scan); } void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude) { Scan scan { .type = Scan::Type::ColourBurst, .number_of_cycles = number_of_cycles, .phase = phase, .amplitude = amplitude }; output_scan(&scan); } void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider) { _openGL_output_builder->reduce_previous_allocation_to(number_of_cycles / source_divider); Scan scan { .type = Scan::Type::Data, .number_of_cycles = number_of_cycles, .tex_x = _openGL_output_builder->get_last_write_x_posiiton(), .tex_y = _openGL_output_builder->get_last_write_y_posiiton(), .source_divider = source_divider }; output_scan(&scan); } Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) { first_cycle_after_sync *= _time_multiplier; number_of_cycles *= _time_multiplier; number_of_lines++; // determine prima facie x extent unsigned int horizontal_period = _horizontal_flywheel->get_standard_period(); unsigned int horizontal_scan_period = _horizontal_flywheel->get_scan_period(); unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period; float start_x = (float)((unsigned)first_cycle_after_sync - horizontal_retrace_period) / (float)horizontal_scan_period; float width = (float)number_of_cycles / (float)horizontal_scan_period; // determine prima facie y extent unsigned int vertical_period = _vertical_flywheel->get_standard_period(); unsigned int vertical_scan_period = _vertical_flywheel->get_scan_period(); unsigned int vertical_retrace_period = vertical_period - vertical_scan_period; float start_y = (float)(((unsigned)first_line_after_sync * horizontal_period) - vertical_retrace_period) / (float)vertical_scan_period; float height = (float)((unsigned)number_of_lines * horizontal_period) / vertical_scan_period; // adjust to ensure aspect ratio is correct float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f); float ideal_width = height * adjusted_aspect_ratio; if(ideal_width > width) { start_x -= (ideal_width - width) * 0.5f; width = ideal_width; } else { float ideal_height = width / adjusted_aspect_ratio; start_y -= (ideal_height - height) * 0.5f; height = ideal_height; } return Rect(start_x, start_y, width, height); }