// // i8272.cpp // Clock Signal // // Created by Thomas Harte on 05/08/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "i8272.hpp" #include using namespace Intel; namespace { const uint8_t StatusRQM = 0x80; // Set: ready to send or receive from processor. const uint8_t StatusDIO = 0x40; // Set: data is expected to be taken from the 8272 by the processor. const uint8_t StatusNDM = 0x20; // Set: the execution phase of a data transfer command is ongoing and DMA mode is disabled. const uint8_t StatusCB = 0x10; // Set: the FDC is busy. //const uint8_t StatusD3B = 0x08; // Set: drive 3 is seeking. //const uint8_t StatusD2B = 0x04; // Set: drive 2 is seeking. //const uint8_t StatusD1B = 0x02; // Set: drive 1 is seeking. //const uint8_t StatusD0B = 0x01; // Set: drive 0 is seeking. } i8272::i8272(Cycles clock_rate, int clock_rate_multiplier, int revolutions_per_minute) : Storage::Disk::MFMController(clock_rate, clock_rate_multiplier, revolutions_per_minute), main_status_(StatusRQM), interesting_event_mask_((int)Event8272::CommandByte), resume_point_(0), delay_time_(0), status_{0, 0, 0} { posit_event((int)Event8272::CommandByte); } void i8272::run_for(Cycles cycles) { Storage::Disk::MFMController::run_for(cycles); // check for an expired timer if(delay_time_ > 0) { if(cycles.as_int() >= delay_time_) { delay_time_ = 0; posit_event((int)Event8272::Timer); } else { delay_time_ -= cycles.as_int(); } } // update seek status of any drives presently seeking for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::Seeking) { drives_[c].step_rate_counter += cycles.as_int(); int steps = drives_[c].step_rate_counter / (8000 * step_rate_time_); drives_[c].step_rate_counter %= (8000 * step_rate_time_); while(steps--) { // Perform a step. int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1; drives_[c].drive->step(direction); drives_[c].head_position += direction; // Check for completion. if(seek_is_satisfied(c)) { drives_[c].phase = Drive::CompletedSeeking; if(drives_[c].target_head_position == -1) drives_[c].head_position = 0; break; } } } } } void i8272::set_register(int address, uint8_t value) { // don't consider attempted sets to the status register if(!address) return; // if not ready for commands, do nothing if(!(main_status_ & StatusRQM)) return; // accumulate latest byte in the command byte sequence command_.push_back(value); posit_event((int)Event8272::CommandByte); } uint8_t i8272::get_register(int address) { if(address) { // printf("8272 get data\n"); if(result_stack_.empty()) return 0xff; uint8_t result = result_stack_.back(); result_stack_.pop_back(); if(result_stack_.empty()) posit_event((int)Event8272::ResultEmpty); return result; } else { // printf("Main status: %02x\n", main_status_); return main_status_; } } void i8272::set_disk(std::shared_ptr disk, int drive) { if(drive < 4 && drive >= 0) { drives_[drive].drive->set_disk(disk); } } #define BEGIN_SECTION() switch(resume_point_) { default: #define END_SECTION() } #define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = (int)mask; return; case __LINE__: #define PASTE(x, y) x##y #define CONCAT(x, y) PASTE(x, y) #define FIND_HEADER() \ CONCAT(find_header, __LINE__): WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \ if(event_type == (int)Event::IndexHole) index_hole_limit_--; \ else if(get_latest_token().type == Token::ID) goto CONCAT(header_found, __LINE__); \ \ if(index_hole_limit_) goto CONCAT(find_header, __LINE__); \ CONCAT(header_found, __LINE__): 0;\ #define FIND_DATA() \ CONCAT(find_data, __LINE__): WAIT_FOR_EVENT((int)Event::Token | (int)Event::IndexHole); \ if(event_type == (int)Event::Token && get_latest_token().type != Token::Data) goto CONCAT(find_data, __LINE__); #define READ_HEADER() \ distance_into_section_ = 0; \ set_data_mode(Reading); \ CONCAT(read_header, __LINE__): WAIT_FOR_EVENT(Event::Token); \ header_[distance_into_section_] = get_latest_token().byte_value; \ distance_into_section_++; \ if(distance_into_section_ != 7) goto CONCAT(read_header, __LINE__); \ set_data_mode(Scanning); #define SET_DRIVE_HEAD_MFM() \ if(!dma_mode_) main_status_ |= StatusNDM; \ set_drive(drives_[command_[1]&3].drive); \ set_is_double_density(command_[0] & 0x40); void i8272::posit_event(int event_type) { if(!(interesting_event_mask_ & event_type)) return; interesting_event_mask_ &= ~event_type; BEGIN_SECTION(); // Resets busy and non-DMA execution, clears the command buffer, sets the data mode to scanning and flows // into wait_for_complete_command_sequence. wait_for_command: set_data_mode(Storage::Disk::MFMController::DataMode::Scanning); main_status_ &= ~(StatusCB | StatusNDM); command_.clear(); // Sets the data request bit, and waits for a byte. Then sets the busy bit. Continues accepting bytes // until it has a quantity that make up an entire command, then resets the data request bit and // branches to that command. wait_for_complete_command_sequence: main_status_ |= StatusRQM; WAIT_FOR_EVENT(Event8272::CommandByte) main_status_ |= StatusCB; switch(command_[0] & 0x1f) { case 0x06: // read data if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto read_data; case 0x0b: // read deleted data if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto read_deleted_data; case 0x05: // write data if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto write_data; case 0x09: // write deleted data if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto write_deleted_data; case 0x02: // read track if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto read_track; case 0x0a: // read ID if(command_.size() < 2) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto read_id; case 0x0d: // format track if(command_.size() < 6) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto format_track; case 0x11: // scan low if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto scan_low; case 0x19: // scan low or equal if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto scan_low_or_equal; case 0x1d: // scan high or equal if(command_.size() < 9) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto scan_high_or_equal; case 0x07: // recalibrate if(command_.size() < 2) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto recalibrate; case 0x08: // sense interrupt status main_status_ &= ~StatusRQM; goto sense_interrupt_status; case 0x03: // specify if(command_.size() < 3) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto specify; case 0x04: // sense drive status if(command_.size() < 2) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto sense_drive_status; case 0x0f: // seek if(command_.size() < 3) goto wait_for_complete_command_sequence; main_status_ &= ~StatusRQM; goto seek; default: // invalid main_status_ &= ~StatusRQM; goto invalid; } // Performs the read data command. read_data: printf("Read data, sector %02x %02x %02x %02x\n", command_[2], command_[3], command_[4], command_[5]); // Establishes the drive and head being addressed, and whether in double density mode; populates the internal // cylinder, head, sector and size registers from the command stream. SET_DRIVE_HEAD_MFM(); cylinder_ = command_[2]; head_ = command_[3]; sector_ = command_[4]; size_ = command_[5]; // Sets a maximum index hole limit of 2 then performs a find header/read header loop, continuing either until // the index hole limit is breached or a sector is found with a cylinder, head, sector and size equal to the // values in the internal registers. index_hole_limit_ = 2; find_next_sector: FIND_HEADER(); if(!index_hole_limit_) goto read_data_not_found; READ_HEADER(); if(header_[0] != cylinder_ || header_[1] != head_ || header_[2] != sector_ || header_[3] != size_) goto find_next_sector; // Finds the next data block and sets data mode to reading. FIND_DATA(); distance_into_section_ = 0; set_data_mode(Reading); // Waits for the next token, then supplies it to the CPU by: (i) setting data request and direction; and (ii) resetting // data request once the byte has been taken. Continues until all bytes have been read. // // TODO: signal if the CPU is too slow and missed a byte; at the minute it'll just silently miss. Also allow for other // ways that sector size might have been specified. get_byte: WAIT_FOR_EVENT(Event::Token); result_stack_.push_back(get_latest_token().byte_value); distance_into_section_++; main_status_ |= StatusRQM | StatusDIO; WAIT_FOR_EVENT(Event8272::ResultEmpty); main_status_ &= ~StatusRQM; if(distance_into_section_ < (128 << size_)) goto get_byte; // For a final result phase, post the standard ST0, ST1, ST2, C, H, R, N goto post_st012chrn; // Execution reaches here if two index holes were discovered before a matching sector — i.e. the data wasn't found. // In that case set appropriate error flags and post the results. read_data_not_found: printf("Not found\n"); status_[1] |= 0x4; status_[0] = 0x40; // (status_[0] & ~0xc0) | goto post_st012chrn; read_deleted_data: printf("Read deleted data unimplemented!!\n"); goto wait_for_command; write_data: printf("Write data unimplemented!!\n"); goto wait_for_command; write_deleted_data: printf("Write deleted data unimplemented!!\n"); goto wait_for_command; read_track: printf("Read track unimplemented!!\n"); goto wait_for_command; // Performs the read ID command. read_id: // Establishes the drive and head being addressed, and whether in double density mode. printf("Read ID\n"); SET_DRIVE_HEAD_MFM(); // Sets a maximum index hole limit of 2 then waits either until it finds a header mark or sees too many index holes. // If a header mark is found, reads in the following bytes that produce a header. Otherwise branches to data not found. index_hole_limit_ = 2; read_id_find_next_sector: FIND_HEADER(); if(!index_hole_limit_) goto read_data_not_found; READ_HEADER(); // Sets internal registers from the discovered header and posts the standard ST0, ST1, ST2, C, H, R, N. cylinder_ = header_[0]; head_ = header_[1]; sector_ = header_[2]; size_ = header_[3]; goto post_st012chrn; format_track: printf("Fromat track unimplemented!!\n"); goto wait_for_command; scan_low: printf("Scan low unimplemented!!\n"); goto wait_for_command; scan_low_or_equal: printf("Scan low or equal unimplemented!!\n"); goto wait_for_command; scan_high_or_equal: printf("Scan high or equal unimplemented!!\n"); goto wait_for_command; // Performs both recalibrate and seek commands. These commands occur asynchronously, so the actual work // occurs in ::run_for; this merely establishes that seeking should be ongoing. recalibrate: seek: printf((command_.size() > 2) ? "Seek\n" : "Recalibrate\n"); // Declines to act if a seek is already ongoing; otherwise resets all status registers, sets the drive // into seeking mode, sets the drive's main status seeking bit, and sets the target head position: for // a recalibrate the target is -1 and ::run_for knows that -1 means the terminal condition is the drive // returning that its at track zero, and that it should reset the drive's current position once reached. if(drives_[command_[1]&3].phase != Drive::Seeking) { status_[0] = status_[1] = status_[2] = 0; int drive = command_[1]&3; drives_[drive].phase = Drive::Seeking; drives_[drive].steps_taken = 0; drives_[drive].target_head_position = (command_.size() > 2) ? command_[2] : -1; drives_[drive].step_rate_counter = 0; // Check whether any steps are even needed. if(seek_is_satisfied(drive)) { drives_[drive].phase = Drive::CompletedSeeking; } else { main_status_ |= 1 << (command_[1]&3); } } goto wait_for_command; // Performs sense interrupt status. sense_interrupt_status: printf("Sense interrupt status\n"); { // Find the first drive that is in the CompletedSeeking state. int found_drive = -1; for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::CompletedSeeking) { found_drive = c; break; } } // If a drive was found, return its results. Otherwise return a single 0x80. if(found_drive != -1) { drives_[found_drive].phase = Drive::NotSeeking; status_[0] = (uint8_t)found_drive | 0x20; main_status_ &= ~(1 << found_drive); result_stack_.push_back(drives_[found_drive].head_position); result_stack_.push_back(status_[0]); } else { result_stack_.push_back(0x80); } } goto post_result; // Performs specify. specify: // Just store the values, and terminate the command. step_rate_time_ = command_[1] &0xf0; // i.e. 16 to 240m head_unload_time_ = command_[1] & 0x0f; // i.e. 1 to 16ms head_load_time_ = command_[2] & ~1; // i.e. 2 to 254 ms in increments of 2ms dma_mode_ = !(command_[2] & 1); goto wait_for_command; sense_drive_status: printf("Sense drive status unimplemented!!\n"); goto wait_for_command; // Performs any invalid command. invalid: // A no-op, but posts ST0. result_stack_.push_back(status_[0]); goto post_result; // Posts ST0, ST1, ST2, C, H, R and N as a result phase. post_st012chrn: result_stack_.push_back(size_); result_stack_.push_back(sector_); result_stack_.push_back(head_); result_stack_.push_back(cylinder_); result_stack_.push_back(status_[2]); result_stack_.push_back(status_[1]); result_stack_.push_back(status_[0]); goto post_result; // Posts whatever is in result_stack_ as a result phase. Be aware that it is a stack — the // last thing in it will be returned first. post_result: // Set ready to send data to the processor, no longer in non-DMA execution phase. main_status_ |= StatusRQM | StatusDIO; main_status_ &= ~StatusNDM; // The actual stuff of unwinding result_stack_ is handled by ::get_register; wait // until the processor has read all result bytes. WAIT_FOR_EVENT(Event8272::ResultEmpty); // Reset data direction and end the command. main_status_ &= ~StatusDIO; goto wait_for_command; END_SECTION() } bool i8272::seek_is_satisfied(int drive) { return (drives_[drive].target_head_position == drives_[drive].head_position) || (drives_[drive].target_head_position == -1 && drives_[drive].drive->get_is_track_zero()); }