// // 6522.hpp // Clock Signal // // Created by Thomas Harte on 06/06/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #ifndef _522_hpp #define _522_hpp #include #include namespace MOS { /*! Implements a template for emulation of the MOS 6522 Versatile Interface Adaptor ('VIA'). The VIA provides: * two timers, each of which may trigger interrupts and one of which may repeat; * two digial input/output ports; and * a serial-to-parallel shifter. Consumers should derive their own curiously-recurring-template-pattern subclass, implementing bus communications as required. */ template class MOS6522 { private: enum InterruptFlag: uint8_t { CA2ActiveEdge = 1 << 0, CA1ActiveEdge = 1 << 1, ShiftRegister = 1 << 2, CB2ActiveEdge = 1 << 3, CB1ActiveEdge = 1 << 4, Timer2 = 1 << 5, Timer1 = 1 << 6, }; public: enum Port { A = 0, B = 1 }; enum Line { One = 0, Two = 1 }; /*! Sets a register value. */ inline void set_register(int address, uint8_t value) { address &= 0xf; // printf("6522 %p: %d <- %02x\n", this, address, value); switch(address) { case 0x0: _registers.output[1] = value; static_cast(this)->set_port_output(Port::B, value, _registers.data_direction[1]); // TODO: handshake _registers.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge); reevaluate_interrupts(); break; case 0xf: case 0x1: _registers.output[0] = value; static_cast(this)->set_port_output(Port::A, value, _registers.data_direction[0]); // TODO: handshake _registers.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge); reevaluate_interrupts(); break; // // No handshake, so write directly // _registers.output[0] = value; // static_cast(this)->set_port_output(0, value); // break; case 0x2: _registers.data_direction[1] = value; break; case 0x3: _registers.data_direction[0] = value; break; // Timer 1 case 0x6: case 0x4: _registers.timer_latch[0] = (_registers.timer_latch[0]&0xff00) | value; break; case 0x5: case 0x7: _registers.timer_latch[0] = (_registers.timer_latch[0]&0x00ff) | (uint16_t)(value << 8); _registers.interrupt_flags &= ~InterruptFlag::Timer1; if(address == 0x05) { _registers.timer[0] = _registers.timer_latch[0]; _timer_is_running[0] = true; } reevaluate_interrupts(); break; // Timer 2 case 0x8: _registers.timer_latch[1] = value; break; case 0x9: _registers.interrupt_flags &= ~InterruptFlag::Timer2; _registers.timer[1] = _registers.timer_latch[1] | (uint16_t)(value << 8); _timer_is_running[1] = true; reevaluate_interrupts(); break; // Shift case 0xa: _registers.shift = value; break; // Control case 0xb: _registers.auxiliary_control = value; break; case 0xc: printf("Peripheral control %02x\n", value); _registers.peripheral_control = value; switch(value & 0x0e) { default: break; case 0x0c: static_cast(this)->set_control_line_output(Port::A, Line::Two, false); break; case 0x0e: static_cast(this)->set_control_line_output(Port::A, Line::Two, true); break; } switch(value & 0xe0) { default: break; case 0xc0: static_cast(this)->set_control_line_output(Port::B, Line::Two, false); break; case 0xe0: static_cast(this)->set_control_line_output(Port::B, Line::Two, true); break; } break; // Interrupt control case 0xd: _registers.interrupt_flags &= ~value; reevaluate_interrupts(); break; case 0xe: if(value&0x80) _registers.interrupt_enable |= value; else _registers.interrupt_enable &= ~value; reevaluate_interrupts(); break; } } /*! Gets a register value. */ inline uint8_t get_register(int address) { address &= 0xf; // printf("6522 %p: %d\n", this, address); switch(address) { case 0x0: _registers.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge); reevaluate_interrupts(); return get_port_input(Port::B, _registers.data_direction[1], _registers.output[1]); case 0xf: // TODO: handshake, latching case 0x1: _registers.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge); reevaluate_interrupts(); return get_port_input(Port::A, _registers.data_direction[0], _registers.output[0]); case 0x2: return _registers.data_direction[1]; case 0x3: return _registers.data_direction[0]; // Timer 1 case 0x4: _registers.interrupt_flags &= ~InterruptFlag::Timer1; reevaluate_interrupts(); return _registers.timer[0] & 0x00ff; case 0x5: return _registers.timer[0] >> 8; case 0x6: return _registers.timer_latch[0] & 0x00ff; case 0x7: return _registers.timer_latch[0] >> 8; // Timer 2 case 0x8: _registers.interrupt_flags &= ~InterruptFlag::Timer2; reevaluate_interrupts(); return _registers.timer[1] & 0x00ff; case 0x9: return _registers.timer[1] >> 8; case 0xa: return _registers.shift; case 0xb: return _registers.auxiliary_control; case 0xc: return _registers.peripheral_control; case 0xd: return _registers.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00); case 0xe: return _registers.interrupt_enable | 0x80; } return 0xff; } inline void set_control_line_input(Port port, Line line, bool value) { switch(line) { case Line::One: if( value != _control_inputs[port].line_one && value == !!(_registers.peripheral_control & (port ? 0x10 : 0x01)) ) { _registers.interrupt_flags |= port ? InterruptFlag::CB1ActiveEdge : InterruptFlag::CA1ActiveEdge; reevaluate_interrupts(); } _control_inputs[port].line_one = value; break; case Line::Two: // TODO break; } } /*! Runs for a specified number of half cycles. Although the original chip accepts only a phase-2 input, timer reloads are specified as occuring 1.5 cycles after the timer hits zero. It is therefore necessary to emulate at half-cycle precision. The first emulated half-cycle will be the period between the trailing edge of a phase-2 input and the next rising edge. So it should align with a full system's phase-1. The next emulated half-cycle will be that which occurs during phase-2. */ inline void run_for_half_cycles(unsigned int number_of_cycles) { while(number_of_cycles--) { if(_is_phase2) { _registers.last_timer[0] = _registers.timer[0]; _registers.last_timer[1] = _registers.timer[1]; if(_registers.timer_needs_reload) { _registers.timer_needs_reload = false; _registers.timer[0] = _registers.timer_latch[0]; } else _registers.timer[0] --; _registers.timer[1] --; } else { // IRQ is raised on the half cycle after overflow if((_registers.timer[1] == 0xffff) && !_registers.last_timer[1] && _timer_is_running[1]) { _timer_is_running[1] = false; _registers.interrupt_flags |= InterruptFlag::Timer2; reevaluate_interrupts(); } if((_registers.timer[0] == 0xffff) && !_registers.last_timer[0] && _timer_is_running[0]) { _registers.interrupt_flags |= InterruptFlag::Timer1; reevaluate_interrupts(); if(_registers.auxiliary_control&0x40) _registers.timer_needs_reload = true; else _timer_is_running[0] = false; } } _is_phase2 ^= true; } } /*! @returns @c true if the IRQ line is currently active; @c false otherwise. */ inline bool get_interrupt_line() { uint8_t interrupt_status = _registers.interrupt_flags & _registers.interrupt_enable & 0x7f; return !!interrupt_status; } MOS6522() : _timer_is_running{false, false}, _last_posted_interrupt_status(false), _is_phase2(false) {} private: // Expected to be overridden uint8_t get_port_input(Port port) { return 0xff; } void set_port_output(Port port, uint8_t value, uint8_t direction_mask) {} bool get_control_line(Port port, Line line) { return true; } void set_control_line_output(Port port, Line line, bool value) {} // void set_interrupt_status(bool status) {} // Input/output multiplexer uint8_t get_port_input(Port port, uint8_t output_mask, uint8_t output) { uint8_t input = static_cast(this)->get_port_input(port); return (input & ~output_mask) | (output & output_mask); } // Phase toggle bool _is_phase2; // Delegate and communications bool _last_posted_interrupt_status; inline void reevaluate_interrupts() { bool new_interrupt_status = get_interrupt_line(); if(new_interrupt_status != _last_posted_interrupt_status) { _last_posted_interrupt_status = new_interrupt_status; static_cast(this)->set_interrupt_status(new_interrupt_status); } } // The registers struct Registers { uint8_t output[2], input[2], data_direction[2]; uint16_t timer[2], timer_latch[2], last_timer[2]; uint8_t shift; uint8_t auxiliary_control, peripheral_control; uint8_t interrupt_flags, interrupt_enable; bool timer_needs_reload; // "A low reset (RES) input clears all R6522 internal registers to logic 0" Registers() : output{0, 0}, input{0, 0}, data_direction{0, 0}, auxiliary_control(0), peripheral_control(0), interrupt_flags(0), interrupt_enable(0), last_timer{0, 0}, timer_needs_reload(false) {} } _registers; // control state struct { bool line_one, line_two; } _control_inputs[2]; // Internal state other than the registers bool _timer_is_running[2]; }; /*! Provided for optional composition with @c MOS6522, @c MOS6522IRQDelegate provides for a delegate that will receive IRQ line change notifications. */ class MOS6522IRQDelegate { public: class Delegate { public: virtual void mos6522_did_change_interrupt_status(void *mos6522) = 0; }; void set_delegate(Delegate *delegate) { _delegate = delegate; } void set_interrupt_status(bool new_status) { if(_delegate) _delegate->mos6522_did_change_interrupt_status(this); } private: Delegate *_delegate; }; } #endif /* _522_hpp */