// // Z80Storage.hpp // Clock Signal // // Created by Thomas Harte on 01/09/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // /*! A repository for all the internal state of a CPU::Z80::Processor; extracted into a separate base class in order to remove it from visibility within the main Z80.hpp. */ struct MicroOp { enum Type { BusOperation, DecodeOperation, DecodeOperationNoRChange, MoveToNextProgram, Increment8, Increment16, Decrement8, Decrement16, Move8, Move16, IncrementPC, AssembleAF, DisassembleAF, And, Or, Xor, TestNZ, TestZ, TestNC, TestC, TestPO, TestPE, TestP, TestM, ADD16, ADC16, SBC16, CP8, SUB8, SBC8, ADD8, ADC8, NEG, ExDEHL, ExAFAFDash, EXX, EI, DI, IM, LDI, LDIR, LDD, LDDR, CPI, CPIR, CPD, CPDR, INI, INIR, IND, INDR, OUTI, OUTD, OUT_R, RLA, RLCA, RRA, RRCA, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD, RRD, SetInstructionPage, CalculateIndexAddress, BeginNMI, BeginIRQ, BeginIRQMode0, RETN, JumpTo66, HALT, DJNZ, DAA, CPL, SCF, CCF, RES, BIT, SET, CalculateRSTDestination, SetAFlags, SetInFlags, SetZero, IndexedPlaceHolder, Reset }; Type type; void *source; void *destination; PartialMachineCycle machine_cycle; }; struct InstructionPage { std::vector instructions; std::vector all_operations; std::vector fetch_decode_execute; MicroOp *fetch_decode_execute_data; uint8_t r_step; bool is_indexed; InstructionPage() : r_step(1), is_indexed(false) {} }; typedef MicroOp InstructionTable[256][30]; // Elemental bus operations #define ReadOpcodeStart() PartialMachineCycle(PartialMachineCycle::ReadOpcodeStart, HalfCycles(3), &pc_.full, &operation_, false) #define ReadOpcodeWait(f) PartialMachineCycle(PartialMachineCycle::ReadOpcodeWait, HalfCycles(2), &pc_.full, &operation_, f) #define ReadOpcodeEnd() PartialMachineCycle(PartialMachineCycle::ReadOpcode, HalfCycles(1), &pc_.full, &operation_, false) #define Refresh(len) PartialMachineCycle(PartialMachineCycle::Refresh, HalfCycles(len), &refresh_addr_.full, nullptr, false) #define ReadStart(addr, val) PartialMachineCycle(PartialMachineCycle::ReadStart, HalfCycles(3), &addr.full, &val, false) #define ReadWait(l, addr, val, f) PartialMachineCycle(PartialMachineCycle::ReadWait, HalfCycles(l), &addr.full, &val, f) #define ReadEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Read, HalfCycles(3), &addr.full, &val, false) #define WriteStart(addr, val) PartialMachineCycle(PartialMachineCycle::WriteStart,HalfCycles(3), &addr.full, &val, false) #define WriteWait(l, addr, val, f) PartialMachineCycle(PartialMachineCycle::WriteWait, HalfCycles(l), &addr.full, &val, f) #define WriteEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Write, HalfCycles(3), &addr.full, &val, false) #define InputStart(addr, val) PartialMachineCycle(PartialMachineCycle::InputStart, HalfCycles(3), &addr.full, &val, false) #define InputWait(addr, val, f) PartialMachineCycle(PartialMachineCycle::InputWait, HalfCycles(2), &addr.full, &val, f) #define InputEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Input, HalfCycles(3), &addr.full, &val, false) #define OutputStart(addr, val) PartialMachineCycle(PartialMachineCycle::OutputStart, HalfCycles(3), &addr.full, &val, false) #define OutputWait(addr, val, f) PartialMachineCycle(PartialMachineCycle::OutputWait, HalfCycles(2), &addr.full, &val, f) #define OutputEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Output, HalfCycles(3), &addr.full, &val, false) #define IntAckStart(length, val) PartialMachineCycle(PartialMachineCycle::InterruptStart, HalfCycles(length), nullptr, &val, false) #define IntWait(val) PartialMachineCycle(PartialMachineCycle::InterruptWait, HalfCycles(2), nullptr, &val, true) #define IntAckEnd(val) PartialMachineCycle(PartialMachineCycle::Interrupt, HalfCycles(3), nullptr, &val, false) // A wrapper to express a bus operation as a micro-op #define BusOp(op) {MicroOp::BusOperation, nullptr, nullptr, op} // Compound bus operations, as micro-ops #define Read3(addr, val) BusOp(ReadStart(addr, val)), BusOp(ReadWait(2, addr, val, true)), BusOp(ReadEnd(addr, val)) #define Read4(addr, val) BusOp(ReadStart(addr, val)), BusOp(ReadWait(2, addr, val, false)), BusOp(ReadWait(2, addr, val, true)), BusOp(ReadEnd(addr, val)) #define Read5(addr, val) BusOp(ReadStart(addr, val)), BusOp(ReadWait(4, addr, val, false)), BusOp(ReadWait(2, addr, val, true)), BusOp(ReadEnd(addr, val)) #define Write3(addr, val) BusOp(WriteStart(addr, val)), BusOp(WriteWait(2, addr, val, true)), BusOp(WriteEnd(addr, val)) #define Write5(addr, val) BusOp(WriteStart(addr, val)), BusOp(WriteWait(4, addr, val, false)), BusOp(WriteWait(2, addr, val, true)), BusOp(WriteEnd(addr, val)) #define Input(addr, val) BusOp(InputStart(addr, val)), BusOp(InputWait(addr, val, false)), BusOp(InputWait(addr, val, true)), BusOp(InputEnd(addr, val)) #define Output(addr, val) BusOp(OutputStart(addr, val)), BusOp(OutputWait(addr, val, false)), BusOp(OutputWait(addr, val, true)), BusOp(OutputEnd(addr, val)) #define InternalOperation(len) {MicroOp::BusOperation, nullptr, nullptr, {PartialMachineCycle::Internal, HalfCycles(len), nullptr, nullptr, false}} /// A sequence is a series of micro-ops that ends in a move-to-next-program operation. #define Sequence(...) { __VA_ARGS__, {MicroOp::MoveToNextProgram} } /// An instruction is the part of an instruction that follows instruction fetch; it should include two or more refresh cycles and then the work of the instruction. #define Instr(r, ...) Sequence(BusOp(Refresh(r)), __VA_ARGS__) /// A standard instruction is one with the most normal timing: two cycles of refresh, then the work. #define StdInstr(...) Instr(4, __VA_ARGS__) // Assumption made: those instructions that are rated with an opcode fetch greater than four cycles spend the extra time // providing a lengthened refresh cycle. I assume this because the CPU doesn't have foresight and presumably spends the // normal refresh time decoding. So if it gets to cycle four and realises it has two more cycles of work, I have assumed // it simply maintains the refresh state for an extra two cycles. class ProcessorStorage { protected: ProcessorStorage(); void install_default_instruction_set(); uint8_t a_; RegisterPair bc_, de_, hl_; RegisterPair afDash_, bcDash_, deDash_, hlDash_; RegisterPair ix_, iy_, pc_, sp_; RegisterPair ir_, refresh_addr_; bool iff1_, iff2_; int interrupt_mode_; uint16_t pc_increment_; uint8_t sign_result_; // the sign flag is set if the value in sign_result_ is negative uint8_t zero_result_; // the zero flag is set if the value in zero_result_ is zero uint8_t half_carry_result_; // the half-carry flag is set if bit 4 of half_carry_result_ is set uint8_t bit53_result_; // the bit 3 and 5 flags are set if the corresponding bits of bit53_result_ are set uint8_t parity_overflow_result_; // the parity/overflow flag is set if the corresponding bit of parity_overflow_result_ is set uint8_t subtract_flag_; // contains a copy of the subtract flag in isolation uint8_t carry_result_; // the carry flag is set if bit 0 of carry_result_ is set uint8_t halt_mask_; HalfCycles number_of_cycles_; enum Interrupt: uint8_t { IRQ = 0x01, NMI = 0x02, Reset = 0x04, PowerOn = 0x08 }; uint8_t request_status_; uint8_t last_request_status_; bool irq_line_, nmi_line_; bool bus_request_line_; bool wait_line_; uint8_t operation_; RegisterPair temp16_, memptr_; uint8_t temp8_; const MicroOp *scheduled_program_counter_; std::vector conditional_call_untaken_program_; std::vector reset_program_; std::vector irq_program_[3]; std::vector nmi_program_; InstructionPage *current_instruction_page_; InstructionPage base_page_; InstructionPage ed_page_; InstructionPage fd_page_; InstructionPage dd_page_; InstructionPage cb_page_; InstructionPage fdcb_page_; InstructionPage ddcb_page_; /*! Gets the flags register. @see set_flags @returns The current value of the flags register. */ uint8_t get_flags() { uint8_t result = (sign_result_ & Flag::Sign) | (zero_result_ ? 0 : Flag::Zero) | (bit53_result_ & (Flag::Bit5 | Flag::Bit3)) | (half_carry_result_ & Flag::HalfCarry) | (parity_overflow_result_ & Flag::Parity) | subtract_flag_ | (carry_result_ & Flag::Carry); return result; } /*! Sets the flags register. @see set_flags @param flags The new value of the flags register. */ void set_flags(uint8_t flags) { sign_result_ = flags; zero_result_ = (flags & Flag::Zero) ^ Flag::Zero; bit53_result_ = flags; half_carry_result_ = flags; parity_overflow_result_ = flags; subtract_flag_ = flags & Flag::Subtract; carry_result_ = flags; } /* The following are helper macros that define common parts of instructions */ #define Inc16(r) {(&r == &pc_) ? MicroOp::IncrementPC : MicroOp::Increment16, &r.full} #define ReadInc(addr, val) Read3(addr, val), Inc16(addr) #define Read4Inc(addr, val) Read4(addr, val), Inc16(addr) #define Read5Inc(addr, val) Read5(addr, val), Inc16(addr) #define WriteInc(addr, val) Write3(addr, val), {MicroOp::Increment16, &addr.full} #define Read16Inc(addr, val) ReadInc(addr, val.bytes.low), ReadInc(addr, val.bytes.high) #define Read16(addr, val) ReadInc(addr, val.bytes.low), Read3(addr, val.bytes.high) #define Write16(addr, val) WriteInc(addr, val.bytes.low), Write3(addr, val.bytes.high) #define INDEX() {MicroOp::IndexedPlaceHolder}, ReadInc(pc_, temp8_), InternalOperation(10), {MicroOp::CalculateIndexAddress, &index} #define FINDEX() {MicroOp::IndexedPlaceHolder}, ReadInc(pc_, temp8_), {MicroOp::CalculateIndexAddress, &index} #define INDEX_ADDR() (add_offsets ? memptr_ : index) #define Push(x) {MicroOp::Decrement16, &sp_.full}, Write3(sp_, x.bytes.high), {MicroOp::Decrement16, &sp_.full}, Write3(sp_, x.bytes.low) #define Pop(x) Read3(sp_, x.bytes.low), {MicroOp::Increment16, &sp_.full}, Read3(sp_, x.bytes.high), {MicroOp::Increment16, &sp_.full} #define Push8(x) {MicroOp::Decrement16, &sp_.full}, Write3(sp_, x.bytes.high), {MicroOp::Decrement16, &sp_.full}, Write5(sp_, x.bytes.low) #define Pop7(x) Read3(sp_, x.bytes.low), {MicroOp::Increment16, &sp_.full}, Read4(sp_, x.bytes.high), {MicroOp::Increment16, &sp_.full} /* The following are actual instructions */ #define NOP Sequence(BusOp(Refresh(4))) #define JP(cc) StdInstr(Read16Inc(pc_, temp16_), {MicroOp::cc, nullptr}, {MicroOp::Move16, &temp16_.full, &pc_.full}) #define CALL(cc) StdInstr(ReadInc(pc_, temp16_.bytes.low), {MicroOp::cc, conditional_call_untaken_program_.data()}, Read4Inc(pc_, temp16_.bytes.high), Push(pc_), {MicroOp::Move16, &temp16_.full, &pc_.full}) #define RET(cc) Instr(6, {MicroOp::cc, nullptr}, Pop(memptr_), {MicroOp::Move16, &memptr_.full, &pc_.full}) #define JR(cc) StdInstr(ReadInc(pc_, temp8_), {MicroOp::cc, nullptr}, InternalOperation(10), {MicroOp::CalculateIndexAddress, &pc_.full}, {MicroOp::Move16, &memptr_.full, &pc_.full}) #define RST() Instr(6, {MicroOp::CalculateRSTDestination}, Push(pc_), {MicroOp::Move16, &memptr_.full, &pc_.full}) #define LD(a, b) StdInstr({MicroOp::Move8, &b, &a}) #define LD_GROUP(r, ri) \ LD(r, bc_.bytes.high), LD(r, bc_.bytes.low), LD(r, de_.bytes.high), LD(r, de_.bytes.low), \ LD(r, index.bytes.high), LD(r, index.bytes.low), \ StdInstr(INDEX(), Read3(INDEX_ADDR(), temp8_), {MicroOp::Move8, &temp8_, &ri}), \ LD(r, a_) #define READ_OP_GROUP(op) \ StdInstr({MicroOp::op, &bc_.bytes.high}), StdInstr({MicroOp::op, &bc_.bytes.low}), \ StdInstr({MicroOp::op, &de_.bytes.high}), StdInstr({MicroOp::op, &de_.bytes.low}), \ StdInstr({MicroOp::op, &index.bytes.high}), StdInstr({MicroOp::op, &index.bytes.low}), \ StdInstr(INDEX(), Read3(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr({MicroOp::op, &a_}) #define READ_OP_GROUP_D(op) \ StdInstr({MicroOp::op, &bc_.bytes.high}), StdInstr({MicroOp::op, &bc_.bytes.low}), \ StdInstr({MicroOp::op, &de_.bytes.high}), StdInstr({MicroOp::op, &de_.bytes.low}), \ StdInstr({MicroOp::op, &index.bytes.high}), StdInstr({MicroOp::op, &index.bytes.low}), \ StdInstr(INDEX(), Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr({MicroOp::op, &a_}) #define RMW(x, op, ...) StdInstr(INDEX(), Read4(INDEX_ADDR(), x), {MicroOp::op, &x}, Write3(INDEX_ADDR(), x)) #define RMWI(x, op, ...) StdInstr(Read4(INDEX_ADDR(), x), {MicroOp::op, &x}, Write3(INDEX_ADDR(), x)) #define MODIFY_OP_GROUP(op) \ StdInstr({MicroOp::op, &bc_.bytes.high}), StdInstr({MicroOp::op, &bc_.bytes.low}), \ StdInstr({MicroOp::op, &de_.bytes.high}), StdInstr({MicroOp::op, &de_.bytes.low}), \ StdInstr({MicroOp::op, &index.bytes.high}), StdInstr({MicroOp::op, &index.bytes.low}), \ RMW(temp8_, op), \ StdInstr({MicroOp::op, &a_}) #define IX_MODIFY_OP_GROUP(op) \ RMWI(bc_.bytes.high, op), \ RMWI(bc_.bytes.low, op), \ RMWI(de_.bytes.high, op), \ RMWI(de_.bytes.low, op), \ RMWI(hl_.bytes.high, op), \ RMWI(hl_.bytes.low, op), \ RMWI(temp8_, op), \ RMWI(a_, op) #define IX_READ_OP_GROUP(op) \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ StdInstr(Read4(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}) #define ADD16(d, s) StdInstr(InternalOperation(8), InternalOperation(6), {MicroOp::ADD16, &s.full, &d.full}) #define ADC16(d, s) StdInstr(InternalOperation(8), InternalOperation(6), {MicroOp::ADC16, &s.full, &d.full}) #define SBC16(d, s) StdInstr(InternalOperation(8), InternalOperation(6), {MicroOp::SBC16, &s.full, &d.full}) #define isTerminal(n) (n == MicroOp::MoveToNextProgram || n == MicroOp::DecodeOperation || n == MicroOp::DecodeOperationNoRChange) virtual void assemble_page(InstructionPage &target, InstructionTable &table, bool add_offsets) = 0; void assemble_ed_page(InstructionPage &target) { #define IN_C(r) StdInstr(Input(bc_, r), {MicroOp::SetInFlags, &r}) #define OUT_C(r) StdInstr(Output(bc_, r)) #define IN_OUT(r) IN_C(r), OUT_C(r) #define NOP_ROW() NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP InstructionTable ed_program_table = { NOP_ROW(), /* 0x00 */ NOP_ROW(), /* 0x10 */ NOP_ROW(), /* 0x20 */ NOP_ROW(), /* 0x30 */ /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(bc_.bytes.high), /* 0x42 SBC HL, BC */ SBC16(hl_, bc_), /* 0x43 LD (nn), BC */ StdInstr(Read16Inc(pc_, memptr_), Write16(memptr_, bc_)), /* 0x44 NEG */ StdInstr({MicroOp::NEG}), /* 0x45 RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x46 IM 0 */ StdInstr({MicroOp::IM}), /* 0x47 LD I, A */ Instr(6, {MicroOp::Move8, &a_, &ir_.bytes.high}), /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(bc_.bytes.low), /* 0x4a ADC HL, BC */ ADC16(hl_, bc_), /* 0x4b LD BC, (nn) */ StdInstr(Read16Inc(pc_, temp16_), Read16(temp16_, bc_)), /* 0x4c NEG */ StdInstr({MicroOp::NEG}), /* 0x4d RETI */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x4e IM 0/1 */ StdInstr({MicroOp::IM}), /* 0x4f LD R, A */ Instr(6, {MicroOp::Move8, &a_, &ir_.bytes.low}), /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(de_.bytes.high), /* 0x52 SBC HL, DE */ SBC16(hl_, de_), /* 0x53 LD (nn), DE */ StdInstr(Read16Inc(pc_, memptr_), Write16(memptr_, de_)), /* 0x54 NEG */ StdInstr({MicroOp::NEG}), /* 0x55 RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x56 IM 1 */ StdInstr({MicroOp::IM}), /* 0x57 LD A, I */ Instr(6, {MicroOp::Move8, &ir_.bytes.high, &a_}, {MicroOp::SetAFlags}), /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(de_.bytes.low), /* 0x5a ADC HL, DE */ ADC16(hl_, de_), /* 0x5b LD DE, (nn) */ StdInstr(Read16Inc(pc_, temp16_), Read16(temp16_, de_)), /* 0x5c NEG */ StdInstr({MicroOp::NEG}), /* 0x5d RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x5e IM 2 */ StdInstr({MicroOp::IM}), /* 0x5f LD A, R */ Instr(6, {MicroOp::Move8, &ir_.bytes.low, &a_}, {MicroOp::SetAFlags}), /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(hl_.bytes.high), /* 0x62 SBC HL, HL */ SBC16(hl_, hl_), /* 0x63 LD (nn), HL */ StdInstr(Read16Inc(pc_, memptr_), Write16(memptr_, hl_)), /* 0x64 NEG */ StdInstr({MicroOp::NEG}), /* 0x65 RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x66 IM 0 */ StdInstr({MicroOp::IM}), /* 0x67 RRD */ StdInstr(Read3(hl_, temp8_), InternalOperation(8), {MicroOp::RRD}, Write3(hl_, temp8_)), /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(hl_.bytes.low), /* 0x6a ADC HL, HL */ ADC16(hl_, hl_), /* 0x6b LD HL, (nn) */ StdInstr(Read16Inc(pc_, temp16_), Read16(temp16_, hl_)), /* 0x6c NEG */ StdInstr({MicroOp::NEG}), /* 0x6d RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x6e IM 0/1 */ StdInstr({MicroOp::IM}), /* 0x6f RLD */ StdInstr(Read3(hl_, temp8_), InternalOperation(8), {MicroOp::RLD}, Write3(hl_, temp8_)), /* 0x70 IN (C) */ IN_C(temp8_), /* 0x71 OUT (C), 0 */ StdInstr({MicroOp::SetZero}, Output(bc_, temp8_)), /* 0x72 SBC HL, SP */ SBC16(hl_, sp_), /* 0x73 LD (nn), SP */ StdInstr(Read16Inc(pc_, memptr_), Write16(memptr_, sp_)), /* 0x74 NEG */ StdInstr({MicroOp::NEG}), /* 0x75 RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x76 IM 1 */ StdInstr({MicroOp::IM}), /* 0x77 XX */ NOP, /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(a_), /* 0x7a ADC HL, SP */ ADC16(hl_, sp_), /* 0x7b LD SP, (nn) */ StdInstr(Read16Inc(pc_, temp16_), Read16(temp16_, sp_)), /* 0x7c NEG */ StdInstr({MicroOp::NEG}), /* 0x7d RETN */ StdInstr(Pop(pc_), {MicroOp::RETN}), /* 0x7e IM 2 */ StdInstr({MicroOp::IM}), /* 0x7f XX */ NOP, NOP_ROW(), /* 0x80 */ NOP_ROW(), /* 0x90 */ /* 0xa0 LDI */ StdInstr(Read3(hl_, temp8_), Write5(de_, temp8_), {MicroOp::LDI}), /* 0xa1 CPI */ StdInstr(Read3(hl_, temp8_), InternalOperation(10), {MicroOp::CPI}), /* 0xa2 INI */ Instr(6, Input(bc_, temp8_), Write3(hl_, temp8_), {MicroOp::INI}), /* 0xa3 OTI */ Instr(6, Read3(hl_, temp8_), {MicroOp::OUTI}, Output(bc_, temp8_)), NOP, NOP, NOP, NOP, /* 0xa8 LDD */ StdInstr(Read3(hl_, temp8_), Write5(de_, temp8_), {MicroOp::LDD}), /* 0xa9 CPD */ StdInstr(Read3(hl_, temp8_), InternalOperation(10), {MicroOp::CPD}), /* 0xaa IND */ Instr(6, Input(bc_, temp8_), Write3(hl_, temp8_), {MicroOp::IND}), /* 0xab OTD */ Instr(6, Read3(hl_, temp8_), {MicroOp::OUTD}, Output(bc_, temp8_)), NOP, NOP, NOP, NOP, /* 0xb0 LDIR */ StdInstr(Read3(hl_, temp8_), Write5(de_, temp8_), {MicroOp::LDIR}, InternalOperation(10)), /* 0xb1 CPIR */ StdInstr(Read3(hl_, temp8_), InternalOperation(10), {MicroOp::CPIR}, InternalOperation(10)), /* 0xb2 INIR */ Instr(6, Input(bc_, temp8_), Write3(hl_, temp8_), {MicroOp::INIR}, InternalOperation(10)), /* 0xb3 OTIR */ Instr(6, Read3(hl_, temp8_), {MicroOp::OUTI}, Output(bc_, temp8_), {MicroOp::OUT_R}, InternalOperation(10)), NOP, NOP, NOP, NOP, /* 0xb8 LDDR */ StdInstr(Read3(hl_, temp8_), Write5(de_, temp8_), {MicroOp::LDDR}, InternalOperation(10)), /* 0xb9 CPDR */ StdInstr(Read3(hl_, temp8_), InternalOperation(10), {MicroOp::CPDR}, InternalOperation(10)), /* 0xba INDR */ Instr(6, Input(bc_, temp8_), Write3(hl_, temp8_), {MicroOp::INDR}, InternalOperation(10)), /* 0xbb OTDR */ Instr(6, Read3(hl_, temp8_), {MicroOp::OUTD}, Output(bc_, temp8_), {MicroOp::OUT_R}, InternalOperation(10)), NOP, NOP, NOP, NOP, NOP_ROW(), /* 0xc0 */ NOP_ROW(), /* 0xd0 */ NOP_ROW(), /* 0xe0 */ NOP_ROW(), /* 0xf0 */ }; assemble_page(target, ed_program_table, false); #undef NOP_ROW } void assemble_cb_page(InstructionPage &target, RegisterPair &index, bool add_offsets) { #define OCTO_OP_GROUP(m, x) m(x), m(x), m(x), m(x), m(x), m(x), m(x), m(x) #define CB_PAGE(m, p) m(RLC), m(RRC), m(RL), m(RR), m(SLA), m(SRA), m(SLL), m(SRL), OCTO_OP_GROUP(p, BIT), OCTO_OP_GROUP(m, RES), OCTO_OP_GROUP(m, SET) InstructionTable cb_program_table = { /* 0x00 RLC B; 0x01 RLC C; 0x02 RLC D; 0x03 RLC E; 0x04 RLC H; 0x05 RLC L; 0x06 RLC (HL); 0x07 RLC A */ /* 0x08 RRC B; 0x09 RRC C; 0x0a RRC D; 0x0b RRC E; 0x0c RRC H; 0x0d RRC L; 0x0e RRC (HL); 0x0f RRC A */ /* 0x10 RL B; 0x11 RL C; 0x12 RL D; 0x13 RL E; 0x14 RL H; 0x15 RL L; 0x16 RL (HL); 0x17 RL A */ /* 0x18 RR B; 0x99 RR C; 0x1a RR D; 0x1b RR E; 0x1c RR H; 0x1d RR L; 0x1e RR (HL); 0x1f RR A */ /* 0x20 SLA B; 0x21 SLA C; 0x22 SLA D; 0x23 SLA E; 0x24 SLA H; 0x25 SLA L; 0x26 SLA (HL); 0x27 SLA A */ /* 0x28 SRA B; 0x29 SRA C; 0x2a SRA D; 0x2b SRA E; 0x2c SRA H; 0x2d SRA L; 0x2e SRA (HL); 0x2f SRA A */ /* 0x30 SLL B; 0x31 SLL C; 0x32 SLL D; 0x33 SLL E; 0x34 SLL H; 0x35 SLL L; 0x36 SLL (HL); 0x37 SLL A */ /* 0x38 SRL B; 0x39 SRL C; 0x3a SRL D; 0x3b SRL E; 0x3c SRL H; 0x3d SRL L; 0x3e SRL (HL); 0x3f SRL A */ /* 0x40 – 0x7f: BIT */ /* 0x80 – 0xcf: RES */ /* 0xd0 – 0xdf: SET */ CB_PAGE(MODIFY_OP_GROUP, READ_OP_GROUP_D) }; InstructionTable offsets_cb_program_table = { CB_PAGE(IX_MODIFY_OP_GROUP, IX_READ_OP_GROUP) }; assemble_page(target, add_offsets ? offsets_cb_program_table : cb_program_table, add_offsets); #undef OCTO_OP_GROUP #undef CB_PAGE } void assemble_base_page(InstructionPage &target, RegisterPair &index, bool add_offsets, InstructionPage &cb_page) { #define INC_DEC_LD(r) \ StdInstr({MicroOp::Increment8, &r}), \ StdInstr({MicroOp::Decrement8, &r}), \ StdInstr(ReadInc(pc_, r)) #define INC_INC_DEC_LD(rf, r) \ Instr(8, {MicroOp::Increment16, &rf.full}), INC_DEC_LD(r) #define DEC_INC_DEC_LD(rf, r) \ Instr(8, {MicroOp::Decrement16, &rf.full}), INC_DEC_LD(r) InstructionTable base_program_table = { /* 0x00 NOP */ NOP, /* 0x01 LD BC, nn */ StdInstr(Read16Inc(pc_, bc_)), /* 0x02 LD (BC), A */ StdInstr({MicroOp::Move16, &bc_.full, &memptr_.full}, Write3(memptr_, a_)), /* 0x03 INC BC; 0x04 INC B; 0x05 DEC B; 0x06 LD B, n */ INC_INC_DEC_LD(bc_, bc_.bytes.high), /* 0x07 RLCA */ StdInstr({MicroOp::RLCA}), /* 0x08 EX AF, AF' */ StdInstr({MicroOp::ExAFAFDash}), /* 0x09 ADD HL, BC */ ADD16(index, bc_), /* 0x0a LD A, (BC) */ StdInstr({MicroOp::Move16, &bc_.full, &memptr_.full}, Read3(memptr_, a_), Inc16(memptr_)), /* 0x0b DEC BC; 0x0c INC C; 0x0d DEC C; 0x0e LD C, n */ DEC_INC_DEC_LD(bc_, bc_.bytes.low), /* 0x0f RRCA */ StdInstr({MicroOp::RRCA}), /* 0x10 DJNZ */ Instr(6, ReadInc(pc_, temp8_), {MicroOp::DJNZ}, InternalOperation(10), {MicroOp::CalculateIndexAddress, &pc_.full}, {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0x11 LD DE, nn */ StdInstr(Read16Inc(pc_, de_)), /* 0x12 LD (DE), A */ StdInstr({MicroOp::Move16, &de_.full, &memptr_.full}, Write3(memptr_, a_)), /* 0x13 INC DE; 0x14 INC D; 0x15 DEC D; 0x16 LD D, n */ INC_INC_DEC_LD(de_, de_.bytes.high), /* 0x17 RLA */ StdInstr({MicroOp::RLA}), /* 0x18 JR */ StdInstr(ReadInc(pc_, temp8_), InternalOperation(10), {MicroOp::CalculateIndexAddress, &pc_.full}, {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0x19 ADD HL, DE */ ADD16(index, de_), /* 0x1a LD A, (DE) */ StdInstr({MicroOp::Move16, &de_.full, &memptr_.full}, Read3(memptr_, a_), Inc16(memptr_)), /* 0x1b DEC DE; 0x1c INC E; 0x1d DEC E; 0x1e LD E, n */ DEC_INC_DEC_LD(de_, de_.bytes.low), /* 0x1f RRA */ StdInstr({MicroOp::RRA}), /* 0x20 JR NZ */ JR(TestNZ), /* 0x21 LD HL, nn */ StdInstr(Read16Inc(pc_, index)), /* 0x22 LD (nn), HL */ StdInstr(Read16Inc(pc_, memptr_), Write16(memptr_, index)), /* 0x23 INC HL; 0x24 INC H; 0x25 DEC H; 0x26 LD H, n */ INC_INC_DEC_LD(index, index.bytes.high), /* 0x27 DAA */ StdInstr({MicroOp::DAA}), /* 0x28 JR Z */ JR(TestZ), /* 0x29 ADD HL, HL */ ADD16(index, index), /* 0x2a LD HL, (nn) */ StdInstr(Read16Inc(pc_, temp16_), Read16(temp16_, index)), /* 0x2b DEC HL; 0x2c INC L; 0x2d DEC L; 0x2e LD L, n */ DEC_INC_DEC_LD(index, index.bytes.low), /* 0x2f CPL */ StdInstr({MicroOp::CPL}), /* 0x30 JR NC */ JR(TestNC), /* 0x31 LD SP, nn */ StdInstr(Read16Inc(pc_, sp_)), /* 0x32 LD (nn), A */ StdInstr(Read16Inc(pc_, temp16_), Write3(temp16_, a_)), /* 0x33 INC SP */ Instr(8, {MicroOp::Increment16, &sp_.full}), /* 0x34 INC (HL) */ StdInstr(INDEX(), Read4(INDEX_ADDR(), temp8_), {MicroOp::Increment8, &temp8_}, Write3(INDEX_ADDR(), temp8_)), /* 0x35 DEC (HL) */ StdInstr(INDEX(), Read4(INDEX_ADDR(), temp8_), {MicroOp::Decrement8, &temp8_}, Write3(INDEX_ADDR(), temp8_)), /* 0x36 LD (HL), n */ StdInstr(ReadInc(pc_, temp8_), Write3(INDEX_ADDR(), temp8_)), /* 0x37 SCF */ StdInstr({MicroOp::SCF}), /* 0x38 JR C */ JR(TestC), /* 0x39 ADD HL, SP */ ADD16(index, sp_), /* 0x3a LD A, (nn) */ StdInstr(Read16Inc(pc_, memptr_), Read3(memptr_, a_), Inc16(memptr_)), /* 0x3b DEC SP */ Instr(8, {MicroOp::Decrement16, &sp_.full}), /* 0x3c INC A; 0x3d DEC A; 0x3e LD A, n */ INC_DEC_LD(a_), /* 0x3f CCF */ StdInstr({MicroOp::CCF}), /* 0x40 LD B, B; 0x41 LD B, C; 0x42 LD B, D; 0x43 LD B, E; 0x44 LD B, H; 0x45 LD B, L; 0x46 LD B, (HL); 0x47 LD B, A */ LD_GROUP(bc_.bytes.high, bc_.bytes.high), /* 0x48 LD C, B; 0x49 LD C, C; 0x4a LD C, D; 0x4b LD C, E; 0x4c LD C, H; 0x4d LD C, L; 0x4e LD C, (HL); 0x4f LD C, A */ LD_GROUP(bc_.bytes.low, bc_.bytes.low), /* 0x50 LD D, B; 0x51 LD D, C; 0x52 LD D, D; 0x53 LD D, E; 0x54 LD D, H; 0x55 LD D, L; 0x56 LD D, (HL); 0x57 LD D, A */ LD_GROUP(de_.bytes.high, de_.bytes.high), /* 0x58 LD E, B; 0x59 LD E, C; 0x5a LD E, D; 0x5b LD E, E; 0x5c LD E, H; 0x5d LD E, L; 0x5e LD E, (HL); 0x5f LD E, A */ LD_GROUP(de_.bytes.low, de_.bytes.low), /* 0x60 LD H, B; 0x61 LD H, C; 0x62 LD H, D; 0x63 LD H, E; 0x64 LD H, H; 0x65 LD H, L; 0x66 LD H, (HL); 0x67 LD H, A */ LD_GROUP(index.bytes.high, hl_.bytes.high), /* 0x68 LD L, B; 0x69 LD L, C; 0x6a LD L, D; 0x6b LD L, E; 0x6c LD L, H; 0x6d LD H, L; 0x6e LD L, (HL); 0x6f LD L, A */ LD_GROUP(index.bytes.low, hl_.bytes.low), /* 0x70 LD (HL), B */ StdInstr(INDEX(), Write3(INDEX_ADDR(), bc_.bytes.high)), /* 0x71 LD (HL), C */ StdInstr(INDEX(), Write3(INDEX_ADDR(), bc_.bytes.low)), /* 0x72 LD (HL), D */ StdInstr(INDEX(), Write3(INDEX_ADDR(), de_.bytes.high)), /* 0x73 LD (HL), E */ StdInstr(INDEX(), Write3(INDEX_ADDR(), de_.bytes.low)), /* 0x74 LD (HL), H */ StdInstr(INDEX(), Write3(INDEX_ADDR(), hl_.bytes.high)), // neither of these stores parts of the index register; /* 0x75 LD (HL), L */ StdInstr(INDEX(), Write3(INDEX_ADDR(), hl_.bytes.low)), // they always store exactly H and L. /* 0x76 HALT */ StdInstr({MicroOp::HALT}), /* 0x77 LD (HL), A */ StdInstr(INDEX(), Write3(INDEX_ADDR(), a_)), /* 0x78 LD A, B; 0x79 LD A, C; 0x7a LD A, D; 0x7b LD A, E; 0x7c LD A, H; 0x7d LD A, L; 0x7e LD A, (HL); 0x7f LD A, A */ LD_GROUP(a_, a_), /* 0x80 ADD B; 0x81 ADD C; 0x82 ADD D; 0x83 ADD E; 0x84 ADD H; 0x85 ADD L; 0x86 ADD (HL); 0x87 ADD A */ READ_OP_GROUP(ADD8), /* 0x88 ADC B; 0x89 ADC C; 0x8a ADC D; 0x8b ADC E; 0x8c ADC H; 0x8d ADC L; 0x8e ADC (HL); 0x8f ADC A */ READ_OP_GROUP(ADC8), /* 0x90 SUB B; 0x91 SUB C; 0x92 SUB D; 0x93 SUB E; 0x94 SUB H; 0x95 SUB L; 0x96 SUB (HL); 0x97 SUB A */ READ_OP_GROUP(SUB8), /* 0x98 SBC B; 0x99 SBC C; 0x9a SBC D; 0x9b SBC E; 0x9c SBC H; 0x9d SBC L; 0x9e SBC (HL); 0x9f SBC A */ READ_OP_GROUP(SBC8), /* 0xa0 AND B; 0xa1 AND C; 0xa2 AND D; 0xa3 AND E; 0xa4 AND H; 0xa5 AND L; 0xa6 AND (HL); 0xa7 AND A */ READ_OP_GROUP(And), /* 0xa8 XOR B; 0xa9 XOR C; 0xaa XOR D; 0xab XOR E; 0xac XOR H; 0xad XOR L; 0xae XOR (HL); 0xaf XOR A */ READ_OP_GROUP(Xor), /* 0xb0 OR B; 0xb1 OR C; 0xb2 OR D; 0xb3 OR E; 0xb4 OR H; 0xb5 OR L; 0xb6 OR (HL); 0xb7 OR A */ READ_OP_GROUP(Or), /* 0xb8 CP B; 0xb9 CP C; 0xba CP D; 0xbb CP E; 0xbc CP H; 0xbd CP L; 0xbe CP (HL); 0xbf CP A */ READ_OP_GROUP(CP8), /* 0xc0 RET NZ */ RET(TestNZ), /* 0xc1 POP BC */ StdInstr(Pop(bc_)), /* 0xc2 JP NZ */ JP(TestNZ), /* 0xc3 JP nn */ StdInstr(Read16(pc_, temp16_), {MicroOp::Move16, &temp16_.full, &pc_.full}), /* 0xc4 CALL NZ */ CALL(TestNZ), /* 0xc5 PUSH BC */ Instr(6, Push(bc_)), /* 0xc6 ADD A, n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::ADD8, &temp8_}), /* 0xc7 RST 00h */ RST(), /* 0xc8 RET Z */ RET(TestZ), /* 0xc9 RET */ StdInstr(Pop(pc_)), /* 0xca JP Z */ JP(TestZ), /* 0xcb [CB page] */StdInstr(FINDEX(), {MicroOp::SetInstructionPage, &cb_page}), /* 0xcc CALL Z */ CALL(TestZ), /* 0xcd CALL */ StdInstr(ReadInc(pc_, temp16_.bytes.low), Read4Inc(pc_, temp16_.bytes.high), Push(pc_), {MicroOp::Move16, &temp16_.full, &pc_.full}), /* 0xce ADC A, n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::ADC8, &temp8_}), /* 0xcf RST 08h */ RST(), /* 0xd0 RET NC */ RET(TestNC), /* 0xd1 POP DE */ StdInstr(Pop(de_)), /* 0xd2 JP NC */ JP(TestNC), /* 0xd3 OUT (n), A */StdInstr(ReadInc(pc_, temp16_.bytes.low), {MicroOp::Move8, &a_, &temp16_.bytes.high}, Output(temp16_, a_)), /* 0xd4 CALL NC */ CALL(TestNC), /* 0xd5 PUSH DE */ Instr(6, Push(de_)), /* 0xd6 SUB n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::SUB8, &temp8_}), /* 0xd7 RST 10h */ RST(), /* 0xd8 RET C */ RET(TestC), /* 0xd9 EXX */ StdInstr({MicroOp::EXX}), /* 0xda JP C */ JP(TestC), /* 0xdb IN A, (n) */StdInstr(ReadInc(pc_, temp16_.bytes.low), {MicroOp::Move8, &a_, &temp16_.bytes.high}, Input(temp16_, a_)), /* 0xdc CALL C */ CALL(TestC), /* 0xdd [DD page] */StdInstr({MicroOp::SetInstructionPage, &dd_page_}), /* 0xde SBC A, n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::SBC8, &temp8_}), /* 0xdf RST 18h */ RST(), /* 0xe0 RET PO */ RET(TestPO), /* 0xe1 POP HL */ StdInstr(Pop(index)), /* 0xe2 JP PO */ JP(TestPO), /* 0xe3 EX (SP), HL */StdInstr(Pop7(memptr_), Push8(index), {MicroOp::Move16, &memptr_.full, &index.full}), /* 0xe4 CALL PO */ CALL(TestPO), /* 0xe5 PUSH HL */ Instr(6, Push(index)), /* 0xe6 AND n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::And, &temp8_}), /* 0xe7 RST 20h */ RST(), /* 0xe8 RET PE */ RET(TestPE), /* 0xe9 JP (HL) */ StdInstr({MicroOp::Move16, &index.full, &pc_.full}), /* 0xea JP PE */ JP(TestPE), /* 0xeb EX DE, HL */StdInstr({MicroOp::ExDEHL}), /* 0xec CALL PE */ CALL(TestPE), /* 0xed [ED page] */StdInstr({MicroOp::SetInstructionPage, &ed_page_}), /* 0xee XOR n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::Xor, &temp8_}), /* 0xef RST 28h */ RST(), /* 0xf0 RET p */ RET(TestP), /* 0xf1 POP AF */ StdInstr(Pop(temp16_), {MicroOp::DisassembleAF}), /* 0xf2 JP P */ JP(TestP), /* 0xf3 DI */ StdInstr({MicroOp::DI}), /* 0xf4 CALL P */ CALL(TestP), /* 0xf5 PUSH AF */ Instr(6, {MicroOp::AssembleAF}, Push(temp16_)), /* 0xf6 OR n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::Or, &temp8_}), /* 0xf7 RST 30h */ RST(), /* 0xf8 RET M */ RET(TestM), /* 0xf9 LD SP, HL */Instr(8, {MicroOp::Move16, &index.full, &sp_.full}), /* 0xfa JP M */ JP(TestM), /* 0xfb EI */ StdInstr({MicroOp::EI}), /* 0xfc CALL M */ CALL(TestM), /* 0xfd [FD page] */StdInstr({MicroOp::SetInstructionPage, &fd_page_}), /* 0xfe CP n */ StdInstr(ReadInc(pc_, temp8_), {MicroOp::CP8, &temp8_}), /* 0xff RST 38h */ RST(), }; if(add_offsets) { // The indexed version of 0x36 differs substantially from the non-indexed by building index calculation into // the cycle that fetches the final operand. So patch in a different microprogram if building an indexed table. InstructionTable copy_table = { StdInstr(FINDEX(), Read5Inc(pc_, temp8_), Write3(INDEX_ADDR(), temp8_)) }; memcpy(&base_program_table[0x36], ©_table[0], sizeof(copy_table[0])); } assemble_cb_page(cb_page, index, add_offsets); assemble_page(target, base_program_table, add_offsets); } void assemble_fetch_decode_execute(InstructionPage &target, int length) { const MicroOp normal_fetch_decode_execute[] = { BusOp(ReadOpcodeStart()), BusOp(ReadOpcodeWait(true)), BusOp(ReadOpcodeEnd()), { MicroOp::DecodeOperation } }; const MicroOp short_fetch_decode_execute[] = { BusOp(ReadOpcodeStart()), BusOp(ReadOpcodeWait(false)), BusOp(ReadOpcodeWait(true)), BusOp(ReadOpcodeEnd()), { MicroOp::DecodeOperation } }; copy_program((length == 4) ? normal_fetch_decode_execute : short_fetch_decode_execute, target.fetch_decode_execute); target.fetch_decode_execute_data = target.fetch_decode_execute.data(); } virtual void copy_program(const MicroOp *source, std::vector &destination) = 0; };