// // 65816Implementation.hpp // Clock Signal // // Created by Thomas Harte on 27/09/2020. // Copyright © 2020 Thomas Harte. All rights reserved. // template void Processor::run_for(const Cycles cycles) { // Temporary storage for the next bus cycle. uint32_t bus_address = 0; uint8_t *bus_value = nullptr; uint8_t throwaway = 0; BusOperation bus_operation = BusOperation::None; Cycles number_of_cycles = cycles + cycles_left_to_run_; while(number_of_cycles > Cycles(0)) { const MicroOp operation = *next_op_; ++next_op_; switch(operation) { // // Scheduling. // case OperationMoveToNextProgram: { // The exception program will determine the appropriate way to respond // based on the pending exception if one exists; otherwise just do a // standard fetch-decode-execute. const auto offset = instructions[pending_exceptions_ ? size_t(OperationSlot::Exception) : size_t(OperationSlot::FetchDecodeExecute)].program_offsets[0]; next_op_ = µ_ops_[offset]; instruction_buffer_.clear(); data_buffer_.clear(); last_operation_pc_ = pc_; } continue; case OperationDecode: { // A VERY TEMPORARY piece of logging. printf("[%04x] %02x\n", pc_ - 1, instruction_buffer_.value); active_instruction_ = &instructions[instruction_buffer_.value]; const auto size_flag = mx_flags_[active_instruction_->size_field]; next_op_ = µ_ops_[active_instruction_->program_offsets[size_flag]]; instruction_buffer_.clear(); } continue; // // PC fetches. // case CycleFetchIncrementPC: case CycleFetchOpcode: bus_address = pc_ | program_bank_; bus_value = instruction_buffer_.next_input(); bus_operation = (operation == CycleFetchOpcode) ? MOS6502Esque::ReadOpcode : MOS6502Esque::Read; // TODO: split this action when I'm happy that my route to bus accesses is settled, to avoid repeating the conditional // embedded into the `switch`. ++pc_; break; case CycleFetchPC: bus_address = pc_ | program_bank_; bus_value = &throwaway; bus_operation = MOS6502Esque::Read; break; // // Data fetches and stores. // #define increment_data_address() data_address_ = (data_address_ & 0xff0000) + ((data_address_ + 1) & 0xffff) #define decrement_data_address() data_address_ = (data_address_ & 0xff0000) + ((data_address_ - 1) & 0xffff) case CycleFetchData: bus_address = data_address_; bus_value = data_buffer_.next_input(); bus_operation = MOS6502Esque::Read; break; case CycleFetchIncrementData: bus_address = data_address_; bus_value = data_buffer_.next_input(); bus_operation = MOS6502Esque::Read; increment_data_address(); break; case CycleStoreData: bus_address = data_address_; bus_value = data_buffer_.next_output(); bus_operation = MOS6502Esque::Read; break; case CycleStoreIncrementData: bus_address = data_address_; bus_value = data_buffer_.next_output(); bus_operation = MOS6502Esque::Read; increment_data_address(); break; case CycleStoreDecrementData: bus_address = data_address_; bus_value = data_buffer_.next_output(); bus_operation = MOS6502Esque::Read; decrement_data_address(); break; #undef increment_data_address #undef decrement_data_address // // Stack accesses. // #define stack_access(value, operation) \ if(emulation_flag_) { \ bus_address = s_.halves.low | 0x100; \ } else { \ bus_address = s_.full; \ } \ bus_value = value; \ bus_operation = operation; case CyclePush: stack_access(data_buffer_.next_stack(), MOS6502Esque::Write); --s_.full; break; case CyclePull: ++s_.full; stack_access(data_buffer_.next_input(), MOS6502Esque::Read); break; case CycleAccessStack: stack_access(&throwaway, MOS6502Esque::Read); break; #undef stack_access // // Data movement. // case OperationCopyPCToData: data_buffer_.size = 2; data_buffer_.value = pc_; break; case OperationCopyInstructionToData: data_buffer_ = instruction_buffer_; break; // // Address construction. // case OperationConstructAbsolute: data_address_ = instruction_buffer_.value | data_bank_; break; case OperationConstructAbsoluteIndexedIndirect: data_address_ = (instruction_buffer_.value + (x_.full & x_masks_[1])) & 0xffff; break; // // Performance. // case OperationPerform: switch(active_instruction_->operation) { // // Flag manipulation. // case CLD: decimal_flag_ = 0; break; // // Loads, stores and transfers // #define LD(dest, src, masks) dest.full = (dest.full & masks[0]) | (src & masks[1]) case LDA: LD(a_, data_buffer_.value, m_masks_); break; case LDX: LD(x_, data_buffer_.value, x_masks_); break; case LDY: LD(y_, data_buffer_.value, x_masks_); break; case TXS: // TODO: does this transfer in full when in 8-bit index mode? LD(s_, x_.full, x_masks_); break; #undef LD case STA: data_buffer_.value = a_.full & m_masks_[1]; data_buffer_.size = 2 - mx_flags_[0]; break; // // Jumps. // case JML: program_bank_ = instruction_buffer_.value & 0xff0000; pc_ = instruction_buffer_.value & 0xffff; break; case JSL: program_bank_ = instruction_buffer_.value & 0xff0000; instruction_buffer_.size = 2; [[fallthrough]]; case JSR: { const uint16_t old_pc = pc_; pc_ = instruction_buffer_.value; instruction_buffer_.value = old_pc; } break; case JSL: { } break; default: assert(false); } break; default: assert(false); } number_of_cycles -= bus_handler_.perform_bus_operation(bus_operation, bus_address, bus_value); } cycles_left_to_run_ = number_of_cycles; } void ProcessorBase::set_power_on(bool active) { if(active) { pending_exceptions_ |= PowerOn; } else { pending_exceptions_ &= ~PowerOn; } } void ProcessorBase::set_irq_line(bool active) { if(active) { pending_exceptions_ |= IRQ; } else { pending_exceptions_ &= ~IRQ; } } void ProcessorBase::set_reset_line(bool active) { if(active) { pending_exceptions_ |= Reset; } else { pending_exceptions_ &= ~Reset; } } void ProcessorBase::set_nmi_line(bool active) { // This is edge triggered. if(active) { pending_exceptions_ |= NMI; } } // The 65816 can't jam. bool ProcessorBase::is_jammed() const { return false; }