// // DiskController.cpp // Clock Signal // // Created by Thomas Harte on 14/07/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "DiskController.hpp" using namespace Storage::Disk; Controller::Controller(unsigned int clock_rate, unsigned int clock_rate_multiplier, unsigned int revolutions_per_minute) : _clock_rate(clock_rate * clock_rate_multiplier), _clock_rate_multiplier(clock_rate_multiplier), TimedEventLoop(clock_rate * clock_rate_multiplier) { _rotational_multiplier.length = 60; _rotational_multiplier.clock_rate = revolutions_per_minute; _rotational_multiplier.simplify(); // seed this class with a PLL, any PLL, so that it's safe to assume non-nullptr later Time one; set_expected_bit_length(one); } void Controller::setup_track() // Time initial_offset { _track = _drive->get_track(); // _track = _disk->get_track_at_position(0, (unsigned int)_head_position); // TODO: probably a better implementation of the empty track? /* Time offset; if(_track && _time_into_track.length > 0) { Time time_found = _track->seek_to(_time_into_track).simplify(); offset = (_time_into_track - time_found).simplify(); _time_into_track = time_found; } else { offset = _time_into_track; _time_into_track.set_zero(); }*/ reset_timer(); get_next_event(); // reset_timer_to_offset(offset * _rotational_multiplier); } void Controller::run_for_cycles(int number_of_cycles) { if(_drive && _drive->has_disk() && _motor_is_on) { if(!_track) setup_track(); number_of_cycles *= _clock_rate_multiplier; while(number_of_cycles) { int cycles_until_next_event = (int)get_cycles_until_next_event(); int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles); _cycles_since_index_hole += (unsigned int)cycles_to_run_for; number_of_cycles -= cycles_to_run_for; _pll->run_for_cycles(cycles_to_run_for); TimedEventLoop::run_for_cycles(cycles_to_run_for); } } } #pragma mark - Track timed event loop void Controller::get_next_event() { if(_track) _current_event = _track->get_next_event(); else { _current_event.length.length = 1; _current_event.length.clock_rate = 1; _current_event.type = Track::Event::IndexHole; } // divide interval, which is in terms of a rotation of the disk, by rotation speed, and // convert it into revolutions per second set_next_event_time_interval(_current_event.length * _rotational_multiplier); } void Controller::process_next_event() { switch(_current_event.type) { case Track::Event::FluxTransition: _pll->add_pulse(); _time_into_track += _current_event.length; break; case Track::Event::IndexHole: _cycles_since_index_hole = 0; _time_into_track.set_zero(); process_index_hole(); break; } get_next_event(); } #pragma mark - PLL control and delegate void Controller::set_expected_bit_length(Time bit_length) { _bit_length = bit_length; // this conversion doesn't need to be exact because there's a lot of variation to be taken // account of in rotation speed, air turbulence, etc, so a direct conversion will do int clocks_per_bit = (int)((bit_length.length * _clock_rate) / bit_length.clock_rate); _pll.reset(new DigitalPhaseLockedLoop(clocks_per_bit, clocks_per_bit / 5, 3)); _pll->set_delegate(this); } void Controller::digital_phase_locked_loop_output_bit(int value) { process_input_bit(value, _cycles_since_index_hole); } #pragma mark - Drive actions bool Controller::get_is_track_zero() { if(!_drive) return false; return _drive->get_is_track_zero(); } bool Controller::get_drive_is_ready() { if(!_drive) return false; return _drive->has_disk(); } void Controller::step(int direction) { if(_drive) _drive->step(direction); invalidate_track(); } void Controller::set_motor_on(bool motor_on) { _motor_is_on = motor_on; } bool Controller::get_motor_on() { return _motor_is_on; } void Controller::set_drive(std::shared_ptr drive) { _drive = drive; invalidate_track(); } void Controller::invalidate_track() { _track = nullptr; }