// // MSX.cpp // Clock Signal // // Created by Thomas Harte on 24/11/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #include "MSX.hpp" #include #include "DiskROM.hpp" #include "Keyboard.hpp" #include "ROMSlotHandler.hpp" #include "../../Analyser/Static/MSX/Cartridge.hpp" #include "Cartridges/ASCII8kb.hpp" #include "Cartridges/ASCII16kb.hpp" #include "Cartridges/Konami.hpp" #include "Cartridges/KonamiWithSCC.hpp" #include "../../Processors/Z80/Z80.hpp" #include "../../Components/1770/1770.hpp" #include "../../Components/9918/9918.hpp" #include "../../Components/8255/i8255.hpp" #include "../../Components/AudioToggle/AudioToggle.hpp" #include "../../Components/AY38910/AY38910.hpp" #include "../../Components/KonamiSCC/KonamiSCC.hpp" #include "../../Storage/Tape/Parsers/MSX.hpp" #include "../../Storage/Tape/Tape.hpp" #include "../../Activity/Source.hpp" #include "../MachineTypes.hpp" #include "../../Configurable/Configurable.hpp" #include "../../Outputs/Log.hpp" #include "../../Outputs/Speaker/Implementation/CompoundSource.hpp" #include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp" #include "../../Outputs/Speaker/Implementation/SampleSource.hpp" #include "../../Configurable/StandardOptions.hpp" #include "../../ClockReceiver/ForceInline.hpp" #include "../../ClockReceiver/JustInTime.hpp" #include "../../Analyser/Static/MSX/Target.hpp" namespace MSX { class AYPortHandler: public GI::AY38910::PortHandler { public: AYPortHandler(Storage::Tape::BinaryTapePlayer &tape_player) : tape_player_(tape_player) { joysticks_.emplace_back(new Joystick); joysticks_.emplace_back(new Joystick); } void set_port_output(bool port_b, uint8_t value) { if(port_b) { // Bits 0-3: touchpad handshaking (?) // Bit 4-5: monostable timer pulses // Bit 6: joystick select selected_joystick_ = (value >> 6) & 1; // Bit 7: code LED, if any } } uint8_t get_port_input(bool port_b) { if(!port_b) { // Bits 0-5: Joystick (up, down, left, right, A, B) // Bit 6: keyboard switch (not universal) // Bit 7: tape input return (static_cast(joysticks_[selected_joystick_].get())->get_state() & 0x3f) | 0x40 | (tape_player_.get_input() ? 0x00 : 0x80); } return 0xff; } const std::vector> &get_joysticks() { return joysticks_; } private: Storage::Tape::BinaryTapePlayer &tape_player_; std::vector> joysticks_; size_t selected_joystick_ = 0; class Joystick: public Inputs::ConcreteJoystick { public: Joystick() : ConcreteJoystick({ Input(Input::Up), Input(Input::Down), Input(Input::Left), Input(Input::Right), Input(Input::Fire, 0), Input(Input::Fire, 1), }) {} void did_set_input(const Input &input, bool is_active) final { uint8_t mask = 0; switch(input.type) { default: return; case Input::Up: mask = 0x01; break; case Input::Down: mask = 0x02; break; case Input::Left: mask = 0x04; break; case Input::Right: mask = 0x08; break; case Input::Fire: if(input.info.control.index >= 2) return; mask = input.info.control.index ? 0x20 : 0x10; break; } if(is_active) state_ &= ~mask; else state_ |= mask; } uint8_t get_state() { return state_; } private: uint8_t state_ = 0xff; }; }; class ConcreteMachine: public Machine, public CPU::Z80::BusHandler, public MachineTypes::TimedMachine, public MachineTypes::AudioProducer, public MachineTypes::ScanProducer, public MachineTypes::MediaTarget, public MachineTypes::MappedKeyboardMachine, public MachineTypes::JoystickMachine, public Configurable::Device, public MemoryMap, public ClockingHint::Observer, public Activity::Source { public: using Target = Analyser::Static::MSX::Target; ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher): z80_(*this), vdp_(TI::TMS::TMS9918A), i8255_(i8255_port_handler_), ay_(GI::AY38910::Personality::AY38910, audio_queue_), audio_toggle_(audio_queue_), scc_(audio_queue_), mixer_(ay_, audio_toggle_, scc_), speaker_(mixer_), tape_player_(3579545 * 2), i8255_port_handler_(*this, audio_toggle_, tape_player_), ay_port_handler_(tape_player_) { set_clock_rate(3579545); std::memset(unpopulated_, 0xff, sizeof(unpopulated_)); clear_all_keys(); ay_.set_port_handler(&ay_port_handler_); speaker_.set_input_rate(3579545.0f / 2.0f); tape_player_.set_clocking_hint_observer(this); // Set the AY to 50% of available volume, the toggle to 10% and leave 40% for an SCC. mixer_.set_relative_volumes({0.5f, 0.1f, 0.4f}); // Install the proper TV standard and select an ideal BIOS name. const std::string machine_name = "MSX"; std::vector required_roms = { {machine_name, "any MSX BIOS", "msx.rom", 32*1024, 0x94ee12f3} }; bool is_ntsc = true; uint8_t character_generator = 1; /* 0 = Japan, 1 = USA, etc, 2 = USSR */ uint8_t date_format = 1; /* 0 = Y/M/D, 1 = M/D/Y, 2 = D/M/Y */ uint8_t keyboard = 1; /* 0 = Japan, 1 = USA, 2 = France, 3 = UK, 4 = Germany, 5 = USSR, 6 = Spain */ // TODO: CRCs below are incomplete, at best. switch(target.region) { case Target::Region::Japan: required_roms.emplace_back(machine_name, "a Japanese MSX BIOS", "msx-japanese.rom", 32*1024, 0xee229390); vdp_->set_tv_standard(TI::TMS::TVStandard::NTSC); is_ntsc = true; character_generator = 0; date_format = 0; break; case Target::Region::USA: required_roms.emplace_back(machine_name, "an American MSX BIOS", "msx-american.rom", 32*1024, 0); vdp_->set_tv_standard(TI::TMS::TVStandard::NTSC); is_ntsc = true; character_generator = 1; date_format = 1; break; case Target::Region::Europe: required_roms.emplace_back(machine_name, "a European MSX BIOS", "msx-european.rom", 32*1024, 0); vdp_->set_tv_standard(TI::TMS::TVStandard::PAL); is_ntsc = false; character_generator = 1; date_format = 2; break; } // Fetch the necessary ROMs; try the region-specific ROM first, // but failing that fall back on patching the main one. size_t disk_index = 0; if(target.has_disk_drive) { disk_index = required_roms.size(); required_roms.emplace_back(machine_name, "the MSX-DOS ROM", "disk.rom", 16*1024, 0x721f61df); } const auto roms = rom_fetcher(required_roms); if((!roms[0] && !roms[1]) || (target.has_disk_drive && !roms[2])) { throw ROMMachine::Error::MissingROMs; } // Figure out which BIOS to use, either a specific one or the generic // one appropriately patched. if(roms[1]) { memory_slots_[0].source = std::move(*roms[1]); memory_slots_[0].source.resize(32768); } else { memory_slots_[0].source = std::move(*roms[0]); memory_slots_[0].source.resize(32768); memory_slots_[0].source[0x2b] = uint8_t( (is_ntsc ? 0x00 : 0x80) | (date_format << 4) | character_generator ); memory_slots_[0].source[0x2c] = keyboard; } for(size_t c = 0; c < 8; ++c) { for(size_t slot = 0; slot < 3; ++slot) { memory_slots_[slot].read_pointers[c] = unpopulated_; memory_slots_[slot].write_pointers[c] = scratch_; } memory_slots_[3].read_pointers[c] = memory_slots_[3].write_pointers[c] = &ram_[c * 8192]; } map(0, 0, 0, 32768); page_memory(0); // Add a disk cartridge if any disks were supplied. if(target.has_disk_drive) { memory_slots_[2].set_handler(new DiskROM(memory_slots_[2].source)); memory_slots_[2].source = std::move(*roms[disk_index]); memory_slots_[2].source.resize(16384); map(2, 0, 0x4000, 0x2000); unmap(2, 0x6000, 0x2000); } // Insert the media. insert_media(target.media); // Type whatever has been requested. if(!target.loading_command.empty()) { type_string(target.loading_command); } } ~ConcreteMachine() { audio_queue_.flush(); } void set_scan_target(Outputs::Display::ScanTarget *scan_target) final { vdp_->set_scan_target(scan_target); } Outputs::Display::ScanStatus get_scaled_scan_status() const final { return vdp_->get_scaled_scan_status(); } void set_display_type(Outputs::Display::DisplayType display_type) final { vdp_->set_display_type(display_type); } Outputs::Display::DisplayType get_display_type() const final { return vdp_->get_display_type(); } Outputs::Speaker::Speaker *get_speaker() final { return &speaker_; } void run_for(const Cycles cycles) final { z80_.run_for(cycles); } float get_confidence() final { if(performed_unmapped_access_ || pc_zero_accesses_ > 1) return 0.0f; if(memory_slots_[1].handler) { return memory_slots_[1].handler->get_confidence(); } return 0.5f; } std::string debug_type() final { if(memory_slots_[1].handler) { return "MSX:" + memory_slots_[1].handler->debug_type(); } return "MSX"; } bool insert_media(const Analyser::Static::Media &media) final { if(!media.cartridges.empty()) { const auto &segment = media.cartridges.front()->get_segments().front(); memory_slots_[1].source = segment.data; map(1, 0, uint16_t(segment.start_address), std::min(segment.data.size(), 65536 - segment.start_address)); auto msx_cartridge = dynamic_cast(media.cartridges.front().get()); if(msx_cartridge) { switch(msx_cartridge->type) { default: break; case Analyser::Static::MSX::Cartridge::Konami: memory_slots_[1].set_handler(new Cartridge::KonamiROMSlotHandler(*this, 1)); break; case Analyser::Static::MSX::Cartridge::KonamiWithSCC: memory_slots_[1].set_handler(new Cartridge::KonamiWithSCCROMSlotHandler(*this, 1, scc_)); break; case Analyser::Static::MSX::Cartridge::ASCII8kb: memory_slots_[1].set_handler(new Cartridge::ASCII8kbROMSlotHandler(*this, 1)); break; case Analyser::Static::MSX::Cartridge::ASCII16kb: memory_slots_[1].set_handler(new Cartridge::ASCII16kbROMSlotHandler(*this, 1)); break; } } } if(!media.tapes.empty()) { tape_player_.set_tape(media.tapes.front()); } if(!media.disks.empty()) { DiskROM *disk_rom = get_disk_rom(); if(disk_rom) { size_t drive = 0; for(auto &disk : media.disks) { disk_rom->set_disk(disk, drive); drive++; if(drive == 2) break; } } } set_use_fast_tape(); return true; } void type_string(const std::string &string) final { std::transform( string.begin(), string.end(), std::back_inserter(input_text_), [](unsigned char c) -> unsigned char { return (c == '\n') ? '\r' : c; } ); } bool can_type(char c) const final { // Make an effort to type the entire printable ASCII range. return c >= 32 && c < 127; } // MARK: MSX::MemoryMap void map(int slot, std::size_t source_address, uint16_t destination_address, std::size_t length) final { assert(!(destination_address & 8191)); assert(!(length & 8191)); assert(size_t(destination_address) + length <= 65536); for(std::size_t c = 0; c < (length >> 13); ++c) { if(memory_slots_[slot].wrapping_strategy == ROMSlotHandler::WrappingStrategy::Repeat) source_address %= memory_slots_[slot].source.size(); memory_slots_[slot].read_pointers[(destination_address >> 13) + c] = (source_address < memory_slots_[slot].source.size()) ? &memory_slots_[slot].source[source_address] : unpopulated_; source_address += 8192; } page_memory(paged_memory_); } void unmap(int slot, uint16_t destination_address, std::size_t length) final { assert(!(destination_address & 8191)); assert(!(length & 8191)); assert(size_t(destination_address) + length <= 65536); for(std::size_t c = 0; c < (length >> 13); ++c) { memory_slots_[slot].read_pointers[(destination_address >> 13) + c] = nullptr; } page_memory(paged_memory_); } // MARK: Ordinary paging. void page_memory(uint8_t value) { paged_memory_ = value; for(std::size_t c = 0; c < 8; c += 2) { read_pointers_[c] = memory_slots_[value & 3].read_pointers[c]; write_pointers_[c] = memory_slots_[value & 3].write_pointers[c]; read_pointers_[c+1] = memory_slots_[value & 3].read_pointers[c+1]; write_pointers_[c+1] = memory_slots_[value & 3].write_pointers[c+1]; value >>= 2; } set_use_fast_tape(); } // MARK: Z80::BusHandler forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) { // Per the best information I currently have, the MSX inserts an extra cycle into each opcode read, // but otherwise runs without pause. const HalfCycles addition((cycle.operation == CPU::Z80::PartialMachineCycle::ReadOpcode) ? 2 : 0); const HalfCycles total_length = addition + cycle.length; if(vdp_ += total_length) { z80_.set_interrupt_line(vdp_->get_interrupt_line(), vdp_.last_sequence_point_overrun()); } time_since_ay_update_ += total_length; memory_slots_[0].cycles_since_update += total_length; memory_slots_[1].cycles_since_update += total_length; memory_slots_[2].cycles_since_update += total_length; memory_slots_[3].cycles_since_update += total_length; if(cycle.is_terminal()) { uint16_t address = cycle.address ? *cycle.address : 0x0000; switch(cycle.operation) { case CPU::Z80::PartialMachineCycle::ReadOpcode: if(use_fast_tape_) { if(address == 0x1a63) { // TAPION // Enable the tape motor. i8255_.write(0xab, 0x8); // Disable interrupts. z80_.set_value_of_register(CPU::Z80::Register::IFF1, 0); z80_.set_value_of_register(CPU::Z80::Register::IFF2, 0); // Use the parser to find a header, and if one is found then populate // LOWLIM and WINWID, and reset carry. Otherwise set carry. using Parser = Storage::Tape::MSX::Parser; std::unique_ptr new_speed = Parser::find_header(tape_player_); if(new_speed) { ram_[0xfca4] = new_speed->minimum_start_bit_duration; ram_[0xfca5] = new_speed->low_high_disrimination_duration; z80_.set_value_of_register(CPU::Z80::Register::Flags, 0); } else { z80_.set_value_of_register(CPU::Z80::Register::Flags, 1); } // RET. *cycle.value = 0xc9; break; } if(address == 0x1abc) { // TAPIN // Grab the current values of LOWLIM and WINWID. using Parser = Storage::Tape::MSX::Parser; Parser::FileSpeed tape_speed; tape_speed.minimum_start_bit_duration = ram_[0xfca4]; tape_speed.low_high_disrimination_duration = ram_[0xfca5]; // Ask the tape parser to grab a byte. int next_byte = Parser::get_byte(tape_speed, tape_player_); // If a byte was found, return it with carry unset. Otherwise set carry to // indicate error. if(next_byte >= 0) { z80_.set_value_of_register(CPU::Z80::Register::A, uint16_t(next_byte)); z80_.set_value_of_register(CPU::Z80::Register::Flags, 0); } else { z80_.set_value_of_register(CPU::Z80::Register::Flags, 1); } // RET. *cycle.value = 0xc9; break; } } if(!address) { pc_zero_accesses_++; } if(read_pointers_[address >> 13] == unpopulated_) { performed_unmapped_access_ = true; } pc_address_ = address; // This is retained so as to be able to name the source of an access to cartridge handlers. [[fallthrough]]; case CPU::Z80::PartialMachineCycle::Read: if(read_pointers_[address >> 13]) { *cycle.value = read_pointers_[address >> 13][address & 8191]; } else { int slot_hit = (paged_memory_ >> ((address >> 14) * 2)) & 3; memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.flush()); *cycle.value = memory_slots_[slot_hit].handler->read(address); } break; case CPU::Z80::PartialMachineCycle::Write: { write_pointers_[address >> 13][address & 8191] = *cycle.value; int slot_hit = (paged_memory_ >> ((address >> 14) * 2)) & 3; if(memory_slots_[slot_hit].handler) { update_audio(); memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.flush()); memory_slots_[slot_hit].handler->write(address, *cycle.value, read_pointers_[pc_address_ >> 13] != memory_slots_[0].read_pointers[pc_address_ >> 13]); } } break; case CPU::Z80::PartialMachineCycle::Input: switch(address & 0xff) { case 0x98: case 0x99: *cycle.value = vdp_->read(address); z80_.set_interrupt_line(vdp_->get_interrupt_line()); break; case 0xa2: update_audio(); *cycle.value = GI::AY38910::Utility::read(ay_); break; case 0xa8: case 0xa9: case 0xaa: case 0xab: *cycle.value = i8255_.read(address); break; default: *cycle.value = 0xff; break; } break; case CPU::Z80::PartialMachineCycle::Output: { const int port = address & 0xff; switch(port) { case 0x98: case 0x99: vdp_->write(address, *cycle.value); z80_.set_interrupt_line(vdp_->get_interrupt_line()); break; case 0xa0: case 0xa1: update_audio(); GI::AY38910::Utility::write(ay_, port == 0xa1, *cycle.value); break; case 0xa8: case 0xa9: case 0xaa: case 0xab: i8255_.write(address, *cycle.value); break; case 0xfc: case 0xfd: case 0xfe: case 0xff: // printf("RAM banking %02x: %02x\n", port, *cycle.value); break; } } break; case CPU::Z80::PartialMachineCycle::Interrupt: *cycle.value = 0xff; // Take this as a convenient moment to jump into the keyboard buffer, if desired. if(!input_text_.empty()) { // The following are KEYBUF per the Red Book; its address and its definition as DEFS 40. const int buffer_start = 0xfbf0; const int buffer_size = 40; // Also from the Red Book: GETPNT is at F3FAH and PUTPNT is at F3F8H. int read_address = ram_[0xf3fa] | (ram_[0xf3fb] << 8); int write_address = ram_[0xf3f8] | (ram_[0xf3f9] << 8); // Write until either the string is exhausted or the write_pointer is immediately // behind the read pointer; temporarily map write_address and read_address into // buffer-relative values. std::size_t characters_written = 0; write_address -= buffer_start; read_address -= buffer_start; while(characters_written < input_text_.size()) { const int next_write_address = (write_address + 1) % buffer_size; if(next_write_address == read_address) break; ram_[write_address + buffer_start] = uint8_t(input_text_[characters_written]); ++characters_written; write_address = next_write_address; } input_text_.erase(input_text_.begin(), input_text_.begin() + std::string::difference_type(characters_written)); // Map the write address back into absolute terms and write it out again as PUTPNT. write_address += buffer_start; ram_[0xf3f8] = uint8_t(write_address); ram_[0xf3f9] = uint8_t(write_address >> 8); } break; default: break; } } if(!tape_player_is_sleeping_) tape_player_.run_for(int(cycle.length.as_integral())); return addition; } void flush() { vdp_.flush(); update_audio(); audio_queue_.perform(); } void set_keyboard_line(int line) { selected_key_line_ = line; } uint8_t read_keyboard() { return key_states_[selected_key_line_]; } void clear_all_keys() final { std::memset(key_states_, 0xff, sizeof(key_states_)); } void set_key_state(uint16_t key, bool is_pressed) final { int mask = 1 << (key & 7); int line = key >> 4; if(is_pressed) key_states_[line] &= ~mask; else key_states_[line] |= mask; } KeyboardMapper *get_keyboard_mapper() final { return &keyboard_mapper_; } // MARK: - Configuration options. std::unique_ptr get_options() final { auto options = std::make_unique(Configurable::OptionsType::UserFriendly); options->output = get_video_signal_configurable(); options->quickload = allow_fast_tape_; return options; } void set_options(const std::unique_ptr &str) final { const auto options = dynamic_cast(str.get()); set_video_signal_configurable(options->output); allow_fast_tape_ = options->quickload; set_use_fast_tape(); } // MARK: - Sleeper void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) final { tape_player_is_sleeping_ = tape_player_.preferred_clocking() == ClockingHint::Preference::None; set_use_fast_tape(); } // MARK: - Activity::Source void set_activity_observer(Activity::Observer *observer) final { DiskROM *disk_rom = get_disk_rom(); if(disk_rom) { disk_rom->set_activity_observer(observer); } i8255_port_handler_.set_activity_observer(observer); } // MARK: - Joysticks const std::vector> &get_joysticks() final { return ay_port_handler_.get_joysticks(); } private: DiskROM *get_disk_rom() { return dynamic_cast(memory_slots_[2].handler.get()); } void update_audio() { speaker_.run_for(audio_queue_, time_since_ay_update_.divide_cycles(Cycles(2))); } class i8255PortHandler: public Intel::i8255::PortHandler { public: i8255PortHandler(ConcreteMachine &machine, Audio::Toggle &audio_toggle, Storage::Tape::BinaryTapePlayer &tape_player) : machine_(machine), audio_toggle_(audio_toggle), tape_player_(tape_player) {} void set_value(int port, uint8_t value) { switch(port) { case 0: machine_.page_memory(value); break; case 2: { // TODO: // b6 caps lock LED // b5 audio output // b4: cassette motor relay tape_player_.set_motor_control(!(value & 0x10)); if(activity_observer_) activity_observer_->set_led_status("Tape motor", !(value & 0x10)); // b7: keyboard click bool new_audio_level = !!(value & 0x80); if(audio_toggle_.get_output() != new_audio_level) { machine_.update_audio(); audio_toggle_.set_output(new_audio_level); } // b0-b3: keyboard line machine_.set_keyboard_line(value & 0xf); } break; default: LOG("Unrecognised: MSX set 8255 output port " << port << " to value " << PADHEX(2) << value); break; } } uint8_t get_value(int port) { if(port == 1) { return machine_.read_keyboard(); } else LOG("MSX attempted to read from 8255 port " << port); return 0xff; } void set_activity_observer(Activity::Observer *observer) { activity_observer_ = observer; if(activity_observer_) { activity_observer_->register_led("Tape motor"); activity_observer_->set_led_status("Tape motor", tape_player_.get_motor_control()); } } private: ConcreteMachine &machine_; Audio::Toggle &audio_toggle_; Storage::Tape::BinaryTapePlayer &tape_player_; Activity::Observer *activity_observer_ = nullptr; }; CPU::Z80::Processor z80_; JustInTimeActor vdp_; Intel::i8255::i8255 i8255_; Concurrency::DeferringAsyncTaskQueue audio_queue_; GI::AY38910::AY38910 ay_; Audio::Toggle audio_toggle_; Konami::SCC scc_; Outputs::Speaker::CompoundSource, Audio::Toggle, Konami::SCC> mixer_; Outputs::Speaker::LowpassSpeaker, Audio::Toggle, Konami::SCC>> speaker_; Storage::Tape::BinaryTapePlayer tape_player_; bool tape_player_is_sleeping_ = false; bool allow_fast_tape_ = false; bool use_fast_tape_ = false; void set_use_fast_tape() { use_fast_tape_ = !tape_player_is_sleeping_ && allow_fast_tape_ && tape_player_.has_tape() && !(paged_memory_&3); } i8255PortHandler i8255_port_handler_; AYPortHandler ay_port_handler_; uint8_t paged_memory_ = 0; uint8_t *read_pointers_[8]; uint8_t *write_pointers_[8]; struct MemorySlots { uint8_t *read_pointers[8]; uint8_t *write_pointers[8]; void set_handler(ROMSlotHandler *slot_handler) { handler.reset(slot_handler); wrapping_strategy = handler->wrapping_strategy(); } std::unique_ptr handler; std::vector source; HalfCycles cycles_since_update; ROMSlotHandler::WrappingStrategy wrapping_strategy = ROMSlotHandler::WrappingStrategy::Repeat; } memory_slots_[4]; uint8_t ram_[65536]; uint8_t scratch_[8192]; uint8_t unpopulated_[8192]; HalfCycles time_since_ay_update_; uint8_t key_states_[16]; int selected_key_line_ = 0; std::string input_text_; MSX::KeyboardMapper keyboard_mapper_; int pc_zero_accesses_ = 0; bool performed_unmapped_access_ = false; uint16_t pc_address_; }; } using namespace MSX; Machine *Machine::MSX(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) { using Target = Analyser::Static::MSX::Target; const Target *const msx_target = dynamic_cast(target); return new ConcreteMachine(*msx_target, rom_fetcher); } Machine::~Machine() {}