// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include "Internals/CRTOpenGL.hpp" #include #include #include #include using namespace Outputs::CRT; void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int vertical_sync_half_lines, bool should_alternate) { openGL_output_builder_.set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator); const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234 const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid // To quote: // // "retrace interval; The interval of time for the return of the blanked scanning beam of // a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs // for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV." time_multiplier_ = IntermediateBufferWidth / cycles_per_line; phase_denominator_ = cycles_per_line * colour_cycle_denominator * time_multiplier_; phase_numerator_ = 0; colour_cycle_numerator_ = colour_cycle_numerator; phase_alternates_ = should_alternate; is_alernate_line_ &= phase_alternates_; cycles_per_line_ = cycles_per_line; unsigned int multiplied_cycles_per_line = cycles_per_line * time_multiplier_; // allow sync to be detected (and acted upon) a line earlier than the specified requirement, // as a simple way of avoiding not-quite-exact comparison issues while still being true enough to // the gist for simple debugging sync_capacitor_charge_threshold_ = ((vertical_sync_half_lines - 2) * cycles_per_line) >> 1; // create the two flywheels horizontal_flywheel_.reset(new Flywheel(multiplied_cycles_per_line, (millisecondsHorizontalRetraceTime * multiplied_cycles_per_line) >> 6, multiplied_cycles_per_line >> 6)); vertical_flywheel_.reset(new Flywheel(multiplied_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * multiplied_cycles_per_line, (multiplied_cycles_per_line * height_of_display) >> 3)); // figure out the divisor necessary to get the horizontal flywheel into a 16-bit range unsigned int real_clock_scan_period = (multiplied_cycles_per_line * height_of_display) / (time_multiplier_ * common_output_divisor_); vertical_flywheel_output_divider_ = static_cast(ceilf(real_clock_scan_period / 65536.0f) * (time_multiplier_ * common_output_divisor_)); openGL_output_builder_.set_timing(cycles_per_line, multiplied_cycles_per_line, height_of_display, horizontal_flywheel_->get_scan_period(), vertical_flywheel_->get_scan_period(), vertical_flywheel_output_divider_); } void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType) { switch(displayType) { case DisplayType::PAL50: set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 709379, 2500, 5, true); // i.e. 283.7516; 2.5 lines = vertical sync set_input_gamma(2.8f); break; case DisplayType::NTSC60: set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 455, 2, 6, false); // i.e. 227.5, 3 lines = vertical sync set_input_gamma(2.2f); break; } } void CRT::set_composite_function_type(CompositeSourceType type, float offset_of_first_sample) { if(type == DiscreteFourSamplesPerCycle) { colour_burst_phase_adjustment_ = static_cast(offset_of_first_sample * 256.0f) & 63; } else { colour_burst_phase_adjustment_ = 0xff; } } void CRT::set_input_gamma(float gamma) { input_gamma_ = gamma; update_gamma(); } void CRT::set_output_gamma(float gamma) { output_gamma_ = gamma; update_gamma(); } void CRT::update_gamma() { float gamma_ratio = input_gamma_ / output_gamma_; openGL_output_builder_.set_gamma(gamma_ratio); } CRT::CRT(unsigned int common_output_divisor, unsigned int buffer_depth) : common_output_divisor_(common_output_divisor), openGL_output_builder_(buffer_depth) {} CRT::CRT( unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int vertical_sync_half_lines, bool should_alternate, unsigned int buffer_depth) : CRT(common_output_divisor, buffer_depth) { set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator, vertical_sync_half_lines, should_alternate); } CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) : CRT(common_output_divisor, buffer_depth) { set_new_display_type(cycles_per_line, displayType); } // MARK: - Sync loop Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return vertical_flywheel_->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced); } Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return horizontal_flywheel_->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced); } #define output_x1() (*reinterpret_cast(&next_output_run[OutputVertexOffsetOfHorizontal + 0])) #define output_x2() (*reinterpret_cast(&next_output_run[OutputVertexOffsetOfHorizontal + 2])) #define output_position_y() (*reinterpret_cast(&next_output_run[OutputVertexOffsetOfVertical + 0])) #define output_tex_y() (*reinterpret_cast(&next_output_run[OutputVertexOffsetOfVertical + 2])) #define source_input_position_y() (*reinterpret_cast(&next_run[SourceVertexOffsetOfInputStart + 2])) #define source_output_position_x1() (*reinterpret_cast(&next_run[SourceVertexOffsetOfOutputStart + 0])) #define source_output_position_x2() (*reinterpret_cast(&next_run[SourceVertexOffsetOfEnds + 2])) #define source_phase() next_run[SourceVertexOffsetOfPhaseTimeAndAmplitude + 0] #define source_amplitude() next_run[SourceVertexOffsetOfPhaseTimeAndAmplitude + 1] void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type) { std::unique_lock output_lock = openGL_output_builder_.get_output_lock(); number_of_cycles *= time_multiplier_; bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data)); while(number_of_cycles) { unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event; Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event); Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); phase_numerator_ += next_run_length * colour_cycle_numerator_; phase_numerator_ %= phase_denominator_; hsync_requested = false; vsync_requested = false; bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace()); uint8_t *next_run = nullptr; if(is_output_segment && !openGL_output_builder_.composite_output_buffer_is_full()) { bool did_retain_source_data = openGL_output_builder_.texture_builder.retain_latest(); if(did_retain_source_data) { next_run = openGL_output_builder_.array_builder.get_input_storage(SourceVertexSize); if(!next_run) { openGL_output_builder_.texture_builder.discard_latest(); } } } if(next_run) { // output_y and texture locations will be written later; we won't necessarily know what they are // outside of the locked region source_output_position_x1() = static_cast(horizontal_flywheel_->get_current_output_position()); source_phase() = colour_burst_phase_; source_amplitude() = colour_burst_amplitude_; } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; // react to the incoming event... horizontal_flywheel_->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None); vertical_flywheel_->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None); if(next_run) { source_output_position_x2() = static_cast(horizontal_flywheel_->get_current_output_position()); } // if this is horizontal retrace then advance the output line counter and bookend an output run Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None; if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event; if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event; bool needs_endpoint = (honoured_event == Flywheel::SyncEvent::StartRetrace && is_writing_composite_run_) || (honoured_event == Flywheel::SyncEvent::EndRetrace && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace()); if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) is_alernate_line_ ^= phase_alternates_; if(needs_endpoint) { if( !openGL_output_builder_.array_builder.is_full() && !openGL_output_builder_.composite_output_buffer_is_full()) { if(!is_writing_composite_run_) { output_run_.x1 = static_cast(horizontal_flywheel_->get_current_output_position()); output_run_.y = static_cast(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_); } else { // Get and write all those previously unwritten output ys const uint16_t output_y = openGL_output_builder_.get_composite_output_y(); // Construct the output run uint8_t *next_output_run = openGL_output_builder_.array_builder.get_output_storage(OutputVertexSize); if(next_output_run) { output_x1() = output_run_.x1; output_position_y() = output_run_.y; output_tex_y() = output_y; output_x2() = static_cast(horizontal_flywheel_->get_current_output_position()); } // TODO: below I've assumed a one-to-one correspondance with output runs and input data; that's // obviously not completely sustainable. It's a latent bug. openGL_output_builder_.array_builder.flush( [=] (uint8_t *input_buffer, std::size_t input_size, uint8_t *output_buffer, std::size_t output_size) { openGL_output_builder_.texture_builder.flush( [=] (const std::vector &write_areas, std::size_t number_of_write_areas) { // assert(number_of_write_areas * SourceVertexSize == input_size); if(number_of_write_areas * SourceVertexSize == input_size) { for(std::size_t run = 0; run < number_of_write_areas; run++) { *reinterpret_cast(&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfInputStart + 0]) = write_areas[run].x; *reinterpret_cast(&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfInputStart + 2]) = write_areas[run].y; *reinterpret_cast(&input_buffer[run * SourceVertexSize + SourceVertexOffsetOfEnds + 0]) = write_areas[run].x + write_areas[run].length; } } }); for(std::size_t position = 0; position < input_size; position += SourceVertexSize) { (*reinterpret_cast(&input_buffer[position + SourceVertexOffsetOfOutputStart + 2])) = output_y; } }); colour_burst_amplitude_ = 0; } is_writing_composite_run_ ^= true; } } if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) { openGL_output_builder_.increment_composite_output_y(); } // if this is vertical retrace then adcance a field if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) { if(delegate_) { frames_since_last_delegate_call_++; if(frames_since_last_delegate_call_ == 20) { output_lock.unlock(); delegate_->crt_did_end_batch_of_frames(this, frames_since_last_delegate_call_, vertical_flywheel_->get_and_reset_number_of_surprises()); output_lock.lock(); frames_since_last_delegate_call_ = 0; } } } } } #undef output_x1 #undef output_x2 #undef output_position_y #undef output_tex_y #undef source_input_position_y #undef source_output_position_x1 #undef source_output_position_x2 #undef source_phase #undef source_amplitude // MARK: - stream feeding methods void CRT::output_scan(const Scan *const scan) { // simplified colour burst logic: if it's within the back porch we'll take it if(scan->type == Scan::Type::ColourBurst) { if(!colour_burst_amplitude_ && horizontal_flywheel_->get_current_time() < (horizontal_flywheel_->get_standard_period() * 12) >> 6) { unsigned int position_phase = (horizontal_flywheel_->get_current_time() * colour_cycle_numerator_ * 256) / phase_denominator_; colour_burst_phase_ = (position_phase + scan->phase) & 255; colour_burst_amplitude_ = scan->amplitude; if(colour_burst_phase_adjustment_ != 0xff) colour_burst_phase_ = (colour_burst_phase_ & ~63) + colour_burst_phase_adjustment_; } } // TODO: inspect raw data for potential colour burst if required; the DPLL and some zero crossing logic // will probably be sufficient but some test data would be helpful // sync logic: mark whether this is currently sync and check for a leading edge const bool this_is_sync = (scan->type == Scan::Type::Sync); const bool is_leading_edge = (!is_receiving_sync_ && this_is_sync); is_receiving_sync_ = this_is_sync; // horizontal sync is recognised on any leading edge that is not 'near' the expected vertical sync; // the second limb is to avoid slightly horizontal sync shifting from the common pattern of // equalisation pulses as the inverse of ordinary horizontal sync bool hsync_requested = is_leading_edge && !vertical_flywheel_->is_near_expected_sync(); if(this_is_sync) { // if this is sync then either begin or continue a sync accumulation phase is_accumulating_sync_ = true; cycles_since_sync_ = 0; } else { // if this is not sync then check how long it has been since sync. If it's more than // half a line then end sync accumulation and zero out the accumulating count cycles_since_sync_ += scan->number_of_cycles; if(cycles_since_sync_ > (cycles_per_line_ >> 2)) { cycles_of_sync_ = 0; is_accumulating_sync_ = false; is_refusing_sync_ = false; } } unsigned int number_of_cycles = scan->number_of_cycles; bool vsync_requested = false; // if sync is being accumulated then accumulate it; if it crosses the vertical sync threshold then // divide this line at the crossing point and indicate vertical sync there if(is_accumulating_sync_ && !is_refusing_sync_) { cycles_of_sync_ += scan->number_of_cycles; if(this_is_sync && cycles_of_sync_ >= sync_capacitor_charge_threshold_) { unsigned int overshoot = std::min(cycles_of_sync_ - sync_capacitor_charge_threshold_, number_of_cycles); if(overshoot) { number_of_cycles -= overshoot; advance_cycles(number_of_cycles, hsync_requested, false, scan->type); hsync_requested = false; number_of_cycles = overshoot; } is_refusing_sync_ = true; vsync_requested = true; } } advance_cycles(number_of_cycles, hsync_requested, vsync_requested, scan->type); } /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(unsigned int number_of_cycles) { Scan scan; scan.type = Scan::Type::Sync; scan.number_of_cycles = number_of_cycles; output_scan(&scan); } void CRT::output_blank(unsigned int number_of_cycles) { Scan scan; scan.type = Scan::Type::Blank; scan.number_of_cycles = number_of_cycles; output_scan(&scan); } void CRT::output_level(unsigned int number_of_cycles) { openGL_output_builder_.texture_builder.reduce_previous_allocation_to(1); Scan scan; scan.type = Scan::Type::Level; scan.number_of_cycles = number_of_cycles; output_scan(&scan); } void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude) { Scan scan; scan.type = Scan::Type::ColourBurst; scan.number_of_cycles = number_of_cycles; scan.phase = phase; scan.amplitude = amplitude; output_scan(&scan); } void CRT::output_default_colour_burst(unsigned int number_of_cycles) { output_colour_burst(number_of_cycles, static_cast((phase_numerator_ * 256) / phase_denominator_ + (is_alernate_line_ ? 128 : 0))); } void CRT::set_immediate_default_phase(float phase) { phase = fmodf(phase, 1.0f); phase_numerator_ = static_cast(phase * static_cast(phase_denominator_)); } void CRT::output_data(unsigned int number_of_cycles, unsigned int number_of_samples) { openGL_output_builder_.texture_builder.reduce_previous_allocation_to(number_of_samples); Scan scan; scan.type = Scan::Type::Data; scan.number_of_cycles = number_of_cycles; output_scan(&scan); } Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) { first_cycle_after_sync *= time_multiplier_; number_of_cycles *= time_multiplier_; first_line_after_sync -= 2; number_of_lines += 4; // determine prima facie x extent unsigned int horizontal_period = horizontal_flywheel_->get_standard_period(); unsigned int horizontal_scan_period = horizontal_flywheel_->get_scan_period(); unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period; // make sure that the requested range is visible if(static_cast(first_cycle_after_sync) < horizontal_retrace_period) first_cycle_after_sync = static_cast(horizontal_retrace_period); if(static_cast(first_cycle_after_sync + number_of_cycles) > horizontal_scan_period) number_of_cycles = static_cast(horizontal_scan_period - static_cast(first_cycle_after_sync)); float start_x = static_cast(static_cast(first_cycle_after_sync) - horizontal_retrace_period) / static_cast(horizontal_scan_period); float width = static_cast(number_of_cycles) / static_cast(horizontal_scan_period); // determine prima facie y extent unsigned int vertical_period = vertical_flywheel_->get_standard_period(); unsigned int vertical_scan_period = vertical_flywheel_->get_scan_period(); unsigned int vertical_retrace_period = vertical_period - vertical_scan_period; // make sure that the requested range is visible // if(static_cast(first_line_after_sync) * horizontal_period < vertical_retrace_period) // first_line_after_sync = (vertical_retrace_period + horizontal_period - 1) / horizontal_period; // if((first_line_after_sync + number_of_lines) * horizontal_period > vertical_scan_period) // number_of_lines = static_cast(horizontal_scan_period - static_cast(first_cycle_after_sync)); float start_y = static_cast((static_cast(first_line_after_sync) * horizontal_period) - vertical_retrace_period) / static_cast(vertical_scan_period); float height = static_cast(static_cast(number_of_lines) * horizontal_period) / vertical_scan_period; // adjust to ensure aspect ratio is correct float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f); float ideal_width = height * adjusted_aspect_ratio; if(ideal_width > width) { start_x -= (ideal_width - width) * 0.5f; width = ideal_width; } else { float ideal_height = width / adjusted_aspect_ratio; start_y -= (ideal_height - height) * 0.5f; height = ideal_height; } return Rect(start_x, start_y, width, height); }