// // ARMDecoderTests.m // Clock Signal // // Created by Thomas Harte on 16/02/2024. // Copyright 2024 Thomas Harte. All rights reserved. // #import #include "../../../InstructionSets/ARM/BarrelShifter.hpp" #include "../../../InstructionSets/ARM/OperationMapper.hpp" #include "../../../InstructionSets/ARM/Registers.hpp" #include "../../../Numeric/Carry.hpp" using namespace InstructionSet::ARM; namespace { struct Memory { template bool write(uint32_t address, IntT source, Mode mode, bool trans) { (void)address; (void)source; (void)mode; (void)trans; return true; } template bool read(uint32_t address, IntT &source, Mode mode, bool trans) { (void)address; (void)source; (void)mode; (void)trans; return true; } }; template struct Scheduler { bool should_schedule(Condition condition) { return registers_.test(condition); } template uint32_t decode_shift(FieldsT fields, uint32_t &rotate_carry, uint32_t pc_offset) { uint32_t shift_amount; if constexpr (allow_register) { if(fields.shift_count_is_register()) { // "When R15 appears in either of the Rn or Rs positions it will give the value // of the PC alone, with the PSR bits replaced by zeroes. ... // // If a register is used to specify the shift amount, the // PC will be 8 bytes ahead when used as Rs." shift_amount = fields.shift_register() == 15 ? registers_.pc(8) : registers_.active[fields.shift_register()]; } else { shift_amount = fields.shift_amount(); } } else { shift_amount = fields.shift_amount(); } // "When R15 appears in the Rm position it will give the value of the PC together // with the PSR flags to the barrel shifter. ... // // If the shift amount is specified in the instruction, the PC will be 8 bytes ahead. // If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead // when used as Rn or Rm." uint32_t operand2; if(fields.operand2() == 15) { operand2 = registers_.pc_status(pc_offset); } else { operand2 = registers_.active[fields.operand2()]; } shift(fields.shift_type(), operand2, shift_amount, rotate_carry); return operand2; } template void perform(DataProcessing fields) { constexpr DataProcessingFlags flags(f); const bool shift_by_register = !flags.operand2_is_immediate() && fields.shift_count_is_register(); // Write a raw result into the PC proxy if the target is R15; it'll be stored properly later. uint32_t pc_proxy = 0; auto &destination = fields.destination() == 15 ? pc_proxy : registers_.active[fields.destination()]; // "When R15 appears in either of the Rn or Rs positions it will give the value // of the PC alone, with the PSR bits replaced by zeroes. ... // // If the shift amount is specified in the instruction, the PC will be 8 bytes ahead. // If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead // when used as Rn or Rm." const uint32_t operand1 = (fields.operand1() == 15) ? registers_.pc(shift_by_register ? 12 : 8) : registers_.active[fields.operand1()]; uint32_t operand2; uint32_t rotate_carry = registers_.c(); // Populate carry from the shift only if it'll be used. constexpr bool shift_sets_carry = is_logical(flags.operation()) && flags.set_condition_codes(); // Get operand 2. if constexpr (flags.operand2_is_immediate()) { operand2 = fields.immediate(); if(fields.rotate()) { shift(operand2, fields.rotate(), rotate_carry); } } else { operand2 = decode_shift(fields, rotate_carry, shift_by_register ? 12 : 8); } // Perform the data processing operation. uint32_t conditions = 0; switch(flags.operation()) { // Logical operations. case DataProcessingOperation::AND: conditions = destination = operand1 & operand2; break; case DataProcessingOperation::EOR: conditions = destination = operand1 ^ operand2; break; case DataProcessingOperation::ORR: conditions = destination = operand1 | operand2; break; case DataProcessingOperation::BIC: conditions = destination = operand1 & ~operand2; break; case DataProcessingOperation::MOV: conditions = destination = operand2; break; case DataProcessingOperation::MVN: conditions = destination = ~operand2; break; case DataProcessingOperation::TST: conditions = operand1 & operand2; break; case DataProcessingOperation::TEQ: conditions = operand1 ^ operand2; break; case DataProcessingOperation::ADD: case DataProcessingOperation::ADC: case DataProcessingOperation::CMN: conditions = operand1 + operand2; if constexpr (flags.operation() == DataProcessingOperation::ADC) { conditions += registers_.c(); } if constexpr (flags.set_condition_codes()) { registers_.set_c(Numeric::carried_out(operand1, operand2, conditions)); registers_.set_v(Numeric::overflow(operand1, operand2, conditions)); } if constexpr (!is_comparison(flags.operation())) { destination = conditions; } break; case DataProcessingOperation::SUB: case DataProcessingOperation::SBC: case DataProcessingOperation::CMP: conditions = operand1 - operand2; if constexpr (flags.operation() == DataProcessingOperation::SBC) { conditions -= registers_.c(); } if constexpr (flags.set_condition_codes()) { registers_.set_c(Numeric::carried_out(operand1, operand2, conditions)); registers_.set_v(Numeric::overflow(operand1, operand2, conditions)); } if constexpr (!is_comparison(flags.operation())) { destination = conditions; } break; case DataProcessingOperation::RSB: case DataProcessingOperation::RSC: conditions = operand2 - operand1; if constexpr (flags.operation() == DataProcessingOperation::RSC) { conditions -= registers_.c(); } if constexpr (flags.set_condition_codes()) { registers_.set_c(Numeric::carried_out(operand2, operand1, conditions)); registers_.set_v(Numeric::overflow(operand2, operand1, conditions)); } destination = conditions; break; } if constexpr (flags.set_condition_codes()) { // "When Rd is a register other than R15, the condition code flags in the PSR may be // updated from the ALU flags as described above. When Rd is R15 and the S flag in // the instruction is set, the PSR is overwritten by the corresponding ALU result. // // ... if the instruction is of a type which does not normally produce a result // (CMP, CMN, TST, TEQ) but Rd is R15 and the S bit is set, the result will be used in // this case to update those PSR flags which are not protected by virtue of the // processor mode." if(fields.destination() == 15) { if constexpr (is_comparison(flags.operation())) { registers_.set_status(pc_proxy); } else { registers_.set_status(pc_proxy); registers_.set_pc(pc_proxy); } } else { // Set N and Z in a unified way. registers_.set_nz(conditions); // Set C from the barrel shifter if applicable. if constexpr (shift_sets_carry) { registers_.set_c(rotate_carry); } } } else { // "If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written." if(fields.destination() == 15) { registers_.set_pc(pc_proxy); } } } template void perform(Multiply fields) { constexpr MultiplyFlags flags(f); // R15 rules: // // * Rs: no PSR, 8 bytes ahead; // * Rn: with PSR, 8 bytes ahead; // * Rm: with PSR, 12 bytes ahead. const uint32_t multiplicand = fields.multiplicand() == 15 ? registers_.pc(8) : registers_.active[fields.multiplicand()]; const uint32_t multiplier = fields.multiplier() == 15 ? registers_.pc_status(8) : registers_.active[fields.multiplier()]; const uint32_t accumulator = flags.operation() == MultiplyFlags::Operation::MUL ? 0 : (fields.multiplicand() == 15 ? registers_.pc_status(12) : registers_.active[fields.accumulator()]); const uint32_t result = multiplicand * multiplier + accumulator; if constexpr (flags.set_condition_codes()) { registers_.set_nz(result); // V is unaffected; C is undefined. } if(fields.destination() != 15) { registers_.active[fields.destination()] = result; } } template void perform(Branch branch) { constexpr BranchFlags flags(f); if constexpr (flags.operation() == BranchFlags::Operation::BL) { registers_.active[14] = registers_.pc(4); } registers_.set_pc(registers_.pc(8) + branch.offset()); } template void perform(SingleDataTransfer transfer) { constexpr SingleDataTransferFlags flags(f); // Calculate offset. uint32_t offset; if constexpr (flags.offset_is_immediate()) { offset = transfer.immediate(); } else { // The 8 shift control bits are described in 6.2.3, but // the register specified shift amounts are not available // in this instruction class. uint32_t carry = registers_.c(); offset = decode_shift(transfer, carry, 8); } // Obtain base address. uint32_t address = transfer.base() == 15 ? registers_.pc(8) : registers_.active[transfer.base()]; // Determine what the address will be after offsetting. uint32_t offsetted_address = address; if constexpr (flags.add_offset()) { offsetted_address += offset; } else { offsetted_address -= offset; } // If preindexing, apply now. if constexpr (flags.pre_index()) { address = offsetted_address; } // Check for an address exception. if(address >= (1 << 26)) { registers_.exception(); return; } constexpr bool trans = !flags.pre_index() && flags.write_back_address(); if constexpr (flags.operation() == SingleDataTransferFlags::Operation::STR) { const uint32_t source = transfer.source() == 15 ? registers_.pc_status(12) : registers_.active[transfer.source()]; bool did_write; if constexpr (flags.transfer_byte()) { did_write = bus_.template write(address, uint8_t(source), registers_.mode(), trans); } else { // "The data presented to the data bus are not affected if the address is not word aligned". did_write = bus_.template write(address, source, registers_.mode(), trans); } if(!did_write) { registers_.exception(); return; } } else { bool did_read; uint32_t value; if constexpr (flags.transfer_byte()) { uint8_t target; did_read = bus_.template read(address, target, registers_.mode(), trans); value = target; } else { did_read = bus_.template read(address, value, registers_.mode(), trans); // "An address offset from a word boundary will cause the data to be rotated into the // register so that the addressed byte occuplies bits 0 to 7." switch(address & 3) { case 0: break; case 1: value = (value >> 8) | (value << 24); break; case 2: value = (value >> 16) | (value << 16); break; case 3: value = (value >> 24) | (value << 8); break; } } if(!did_read) { registers_.exception(); return; } if(transfer.destination() == 15) { registers_.set_pc(value); } else { registers_.active[transfer.destination()] = value; } } // If either postindexing or else with writeback, update base. if constexpr (!flags.pre_index() || flags.write_back_address()) { if(transfer.base() == 15) { registers_.set_pc(offsetted_address); } else { registers_.active[transfer.base()] = offsetted_address; } } } template void perform(BlockDataTransfer transfer) { constexpr BlockDataTransferFlags flags(f); uint32_t address = transfer.base() == 15 ? registers_.pc_status(8) : registers_.active[transfer.base()]; constexpr uint32_t step = flags.add_offset() ? 4 : -4; // TODO: forcing transfer of the user bank. // TODO: inclusion of the base in the register list. // TODO: data aborts. const auto visit = [&](uint32_t &value) { if constexpr (flags.pre_index()) { address += step; } if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) { bus_.template read(address, value, registers_.mode(), false); } else { bus_.template write(address, value, registers_.mode(), false); } if constexpr (!flags.pre_index()) { address += step; } }; const uint16_t list = transfer.register_list(); for(int c = 0; c < 15; c++) { if(list & (1 << c)) { visit(registers_.active[c]); } } if(list & (1 << 15)) { uint32_t value; if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) { value = registers_.pc_status(12); visit(value); } else { visit(value); registers_.set_pc(value); if constexpr (flags.load_psr()) { // TODO: [T]he PSR will be overwritten by the corresponding bits of the loaded value. // In user mode, however, the I, F, M0 and M1 bits are protected from change // ... The mode at the start of the instruction determines whether these bits // are protected. } } } if constexpr (flags.write_back_address()) { if(transfer.base() != 15) { registers_.active[transfer.base()] = address; } } } void software_interrupt() { registers_.exception(); } void unknown() { registers_.exception(); } // Act as if no coprocessors present. template void perform(CoprocessorRegisterTransfer) { registers_.exception(); } template void perform(CoprocessorDataOperation) { registers_.exception(); } template void perform(CoprocessorDataTransfer) { registers_.exception(); } MemoryT bus_; private: Registers registers_; }; } @interface ARMDecoderTests : XCTestCase @end @implementation ARMDecoderTests - (void)testXYX { Scheduler scheduler; for(int c = 0; c < 65536; c++) { InstructionSet::ARM::dispatch(c << 16, scheduler); } InstructionSet::ARM::dispatch(0xEAE06900, scheduler); } @end