// // Executor.hpp // Clock Signal // // Created by Thomas Harte on 01/03/2024. // Copyright © 2024 Thomas Harte. All rights reserved. // #pragma once #include "BarrelShifter.hpp" #include "OperationMapper.hpp" #include "Registers.hpp" #include "../../Numeric/Carry.hpp" namespace InstructionSet::ARM { /// A class compatible with the @c OperationMapper definition of a scheduler which applies all actions /// immediately, updating either a set of @c Registers or using the templated @c MemoryT to access /// memory. No hooks are currently provided for applying realistic timing. template struct Executor { bool should_schedule(Condition condition) { return registers_.test(condition); } template uint32_t decode_shift(FieldsT fields, uint32_t &rotate_carry, uint32_t pc_offset) { // "When R15 appears in the Rm position it will give the value of the PC together // with the PSR flags to the barrel shifter. ... // // If the shift amount is specified in the instruction, the PC will be 8 bytes ahead. // If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead // when used as Rn or Rm." uint32_t operand2; if(fields.operand2() == 15) { operand2 = registers_.pc_status(pc_offset); } else { operand2 = registers_.active[fields.operand2()]; } uint32_t shift_amount; if constexpr (allow_register) { if(fields.shift_count_is_register()) { // "When R15 appears in either of the Rn or Rs positions it will give the value // of the PC alone, with the PSR bits replaced by zeroes. ... // // If a register is used to specify the shift amount, the // PC will be 8 bytes ahead when used as Rs." shift_amount = fields.shift_register() == 15 ? registers_.pc(4) : registers_.active[fields.shift_register()]; // A register shift amount of 0 has a different meaning than an in-instruction // shift amount of 0. if(!shift_amount) { return operand2; } } else { shift_amount = fields.shift_amount(); } } else { shift_amount = fields.shift_amount(); } shift(fields.shift_type(), operand2, shift_amount, rotate_carry); return operand2; } template void perform(DataProcessing fields) { constexpr DataProcessingFlags flags(f); const bool shift_by_register = !flags.operand2_is_immediate() && fields.shift_count_is_register(); // Write a raw result into the PC proxy if the target is R15; it'll be stored properly later. uint32_t pc_proxy = 0; auto &destination = fields.destination() == 15 ? pc_proxy : registers_.active[fields.destination()]; // "When R15 appears in either of the Rn or Rs positions it will give the value // of the PC alone, with the PSR bits replaced by zeroes. ... // // If the shift amount is specified in the instruction, the PC will be 8 bytes ahead. // If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead // when used as Rn or Rm." const uint32_t operand1 = (fields.operand1() == 15) ? registers_.pc(shift_by_register ? 8 : 4) : registers_.active[fields.operand1()]; uint32_t operand2; uint32_t rotate_carry = registers_.c(); // Populate carry from the shift only if it'll be used. constexpr bool shift_sets_carry = is_logical(flags.operation()) && flags.set_condition_codes(); // Get operand 2. if constexpr (flags.operand2_is_immediate()) { operand2 = fields.immediate(); if(fields.rotate()) { shift(operand2, fields.rotate(), rotate_carry); } } else { operand2 = decode_shift(fields, rotate_carry, shift_by_register ? 8 : 4); } // Perform the data processing operation. uint32_t conditions = 0; switch(flags.operation()) { // Logical operations. case DataProcessingOperation::AND: conditions = destination = operand1 & operand2; break; case DataProcessingOperation::EOR: conditions = destination = operand1 ^ operand2; break; case DataProcessingOperation::ORR: conditions = destination = operand1 | operand2; break; case DataProcessingOperation::BIC: conditions = destination = operand1 & ~operand2; break; case DataProcessingOperation::MOV: conditions = destination = operand2; break; case DataProcessingOperation::MVN: conditions = destination = ~operand2; break; case DataProcessingOperation::TST: conditions = operand1 & operand2; break; case DataProcessingOperation::TEQ: conditions = operand1 ^ operand2; break; case DataProcessingOperation::ADD: case DataProcessingOperation::ADC: case DataProcessingOperation::CMN: conditions = operand1 + operand2; if constexpr (flags.operation() == DataProcessingOperation::ADC) { conditions += registers_.c(); } if constexpr (flags.set_condition_codes()) { registers_.set_c(Numeric::carried_out(operand1, operand2, conditions)); registers_.set_v(Numeric::overflow(operand1, operand2, conditions)); } if constexpr (!is_comparison(flags.operation())) { destination = conditions; } break; case DataProcessingOperation::SUB: case DataProcessingOperation::SBC: case DataProcessingOperation::CMP: conditions = operand1 - operand2; if constexpr (flags.operation() == DataProcessingOperation::SBC) { conditions -= registers_.c(); } if constexpr (flags.set_condition_codes()) { registers_.set_c(Numeric::carried_out(operand1, operand2, conditions)); registers_.set_v(Numeric::overflow(operand1, operand2, conditions)); } if constexpr (!is_comparison(flags.operation())) { destination = conditions; } break; case DataProcessingOperation::RSB: case DataProcessingOperation::RSC: conditions = operand2 - operand1; if constexpr (flags.operation() == DataProcessingOperation::RSC) { conditions -= registers_.c(); } if constexpr (flags.set_condition_codes()) { registers_.set_c(Numeric::carried_out(operand2, operand1, conditions)); registers_.set_v(Numeric::overflow(operand2, operand1, conditions)); } destination = conditions; break; } if constexpr (flags.set_condition_codes()) { // "When Rd is a register other than R15, the condition code flags in the PSR may be // updated from the ALU flags as described above. When Rd is R15 and the S flag in // the instruction is set, the PSR is overwritten by the corresponding ALU result. // // ... if the instruction is of a type which does not normally produce a result // (CMP, CMN, TST, TEQ) but Rd is R15 and the S bit is set, the result will be used in // this case to update those PSR flags which are not protected by virtue of the // processor mode." if(fields.destination() == 15) { if constexpr (is_comparison(flags.operation())) { registers_.set_status(pc_proxy); } else { registers_.set_status(pc_proxy); registers_.set_pc(pc_proxy); } } else { // Set N and Z in a unified way. registers_.set_nz(conditions); // Set C from the barrel shifter if applicable. if constexpr (shift_sets_carry) { registers_.set_c(rotate_carry); } } } else { // "If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written." if(fields.destination() == 15) { registers_.set_pc(pc_proxy); } } } template void perform(Multiply fields) { constexpr MultiplyFlags flags(f); // R15 rules: // // * Rs: no PSR, 8 bytes ahead; // * Rn: with PSR, 8 bytes ahead; // * Rm: with PSR, 12 bytes ahead. const uint32_t multiplicand = fields.multiplicand() == 15 ? registers_.pc(4) : registers_.active[fields.multiplicand()]; const uint32_t multiplier = fields.multiplier() == 15 ? registers_.pc_status(4) : registers_.active[fields.multiplier()]; const uint32_t accumulator = flags.operation() == MultiplyFlags::Operation::MUL ? 0 : (fields.multiplicand() == 15 ? registers_.pc_status(8) : registers_.active[fields.accumulator()]); const uint32_t result = multiplicand * multiplier + accumulator; if constexpr (flags.set_condition_codes()) { registers_.set_nz(result); // V is unaffected; C is undefined. } if(fields.destination() != 15) { registers_.active[fields.destination()] = result; } } template void perform(Branch branch) { constexpr BranchFlags flags(f); if constexpr (flags.operation() == BranchFlags::Operation::BL) { registers_.active[14] = registers_.pc(0); } registers_.set_pc(registers_.pc(4) + branch.offset()); } template void perform(SingleDataTransfer transfer) { constexpr SingleDataTransferFlags flags(f); // Calculate offset. uint32_t offset; if constexpr (!flags.offset_is_immediate()) { // The 8 shift control bits are described in 6.2.3, but // the register specified shift amounts are not available // in this instruction class. uint32_t carry = registers_.c(); offset = decode_shift(transfer, carry, 4); } else { offset = transfer.immediate(); } // Obtain base address. uint32_t address = transfer.base() == 15 ? registers_.pc(4) : registers_.active[transfer.base()]; // Determine what the address will be after offsetting. uint32_t offsetted_address = address; if constexpr (flags.add_offset()) { offsetted_address += offset; } else { offsetted_address -= offset; } // If preindexing, apply now. if constexpr (flags.pre_index()) { address = offsetted_address; } // Check for an address exception. if(address >= (1 << 26)) { registers_.exception(); return; } constexpr bool trans = !flags.pre_index() && flags.write_back_address(); if constexpr (flags.operation() == SingleDataTransferFlags::Operation::STR) { const uint32_t source = transfer.source() == 15 ? registers_.pc_status(8) : registers_.active[transfer.source()]; bool did_write; if constexpr (flags.transfer_byte()) { did_write = bus.template write(address, uint8_t(source), registers_.mode(), trans); } else { // "The data presented to the data bus are not affected if the address is not word aligned". did_write = bus.template write(address, source, registers_.mode(), trans); } if(!did_write) { registers_.exception(); return; } } else { bool did_read; uint32_t value; if constexpr (flags.transfer_byte()) { uint8_t target; did_read = bus.template read(address, target, registers_.mode(), trans); value = target; } else { did_read = bus.template read(address, value, registers_.mode(), trans); // "An address offset from a word boundary will cause the data to be rotated into the // register so that the addressed byte occuplies bits 0 to 7." switch(address & 3) { case 0: break; case 1: value = (value >> 8) | (value << 24); break; case 2: value = (value >> 16) | (value << 16); break; case 3: value = (value >> 24) | (value << 8); break; } } if(!did_read) { registers_.exception(); return; } if(transfer.destination() == 15) { registers_.set_pc(value); } else { registers_.active[transfer.destination()] = value; } } // If either postindexing or else with writeback, update base. if constexpr (!flags.pre_index() || flags.write_back_address()) { if(transfer.base() == 15) { registers_.set_pc(offsetted_address); } else { registers_.active[transfer.base()] = offsetted_address; } } } template void perform(BlockDataTransfer transfer) { constexpr BlockDataTransferFlags flags(f); // Grab a copy of the list of registers to transfer. const uint16_t list = transfer.register_list(); // Read the base address and take a copy in case a data abort means that // it has to be restored later, and to write that value rather than // the final address if the base register is first in the write-out list. uint32_t address = transfer.base() == 15 ? registers_.pc_status(4) : registers_.active[transfer.base()]; const uint32_t initial_address = address; // Figure out what the final address will be, since that's what'll be // in the output if the base register is second or beyond in the // write-out list. // // Writes are always ordered from lowest address to highest; adjust the // start address if this write is supposed to fill memory downward from // the base. // TODO: use std::popcount when adopting C++20. uint32_t total = ((list & 0xa) >> 1) + (list & 0x5); total = ((list & 0xc) >> 2) + (list & 0x3); uint32_t final_address; if constexpr (!flags.add_offset()) { final_address = address + total * 4; address = final_address; } else { final_address = address + total * 4; } // For loads, keep a record of the value replaced by the last load and // where it came from. A data abort cancels both the current load and // the one before it, so this is used by this implementation to undo // the previous load in that case. struct { uint32_t *target = nullptr; uint32_t value; } last_replacement; // Check whether access is forced ot the user bank; if so then switch // to it now. Also keep track of the original mode to switch back at // the end. const Mode original_mode = registers_.mode(); const bool adopt_user_mode = ( flags.operation() == BlockDataTransferFlags::Operation::STM && flags.load_psr() ) || ( flags.operation() == BlockDataTransferFlags::Operation::LDM && !(list & (1 << 15)) ); if(adopt_user_mode) { registers_.set_mode(Mode::User); } bool address_error = false; // Keep track of whether all accesses succeeded in order potentially to // throw a data abort later. bool accesses_succeeded = true; const auto access = [&](uint32_t &value) { // Update address in advance for: // * pre-indexed upward stores; and // * post-indxed downward stores. if constexpr (flags.pre_index() == flags.add_offset()) { address += 4; } if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) { if(!address_error) { // "If the abort occurs during a store multiple instruction, ARM takes little action until // the instruction completes, whereupon it enters the data abort trap. The memory manager is // responsible for preventing erroneous writes to the memory." accesses_succeeded &= bus.template write(address, value, registers_.mode(), false); } } else { // When ARM detects a data abort during a load multiple instruction, it modifies the operation of // the instruction to ensure that recovery is possible. // // * Overwriting of registers stops when the abort happens. The aborting load will not // take place, nor will the preceding one ... // * The base register is restored, to its modified value if write-back was requested. if(accesses_succeeded) { const uint32_t replaced = value; accesses_succeeded &= bus.template read(address, value, registers_.mode(), false); // Update the last-modified slot if the access succeeded; otherwise // undo the last modification if there was one, and undo the base // address change. if(accesses_succeeded) { last_replacement.value = replaced; last_replacement.target = &value; } else { if(last_replacement.target) { *last_replacement.target = last_replacement.value; } // Also restore the base register. if(transfer.base() != 15) { if constexpr (flags.write_back_address()) { registers_.active[transfer.base()] = final_address; } else { registers_.active[transfer.base()] = initial_address; } } } } else { // Implicitly: do the access anyway, but don't store the value. I think. uint32_t throwaway; bus.template read(address, throwaway, registers_.mode(), false); } } // Update address after the fact for: // * post-indexed upward stores; and // * pre-indxed downward stores. if constexpr (flags.pre_index() != flags.add_offset()) { address += 4; } }; // Check for an address exception. address_error = address >= (1 << 26); // Write out registers 1 to 14. for(int c = 0; c < 15; c++) { if(list & (1 << c)) { access(registers_.active[c]); // Modify base register after each write if writeback is enabled. // This'll ensure the unmodified value goes out if it was the // first-selected register only. if constexpr (flags.write_back_address()) { if(transfer.base() != 15) { registers_.active[transfer.base()] = final_address; } } } } // Definitively write back, even if the earlier register list // was empty. if constexpr (flags.write_back_address()) { if(transfer.base() != 15) { registers_.active[transfer.base()] = final_address; } } // Read or write the program counter as a special case if it was in the list. if(list & (1 << 15)) { uint32_t value; if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) { value = registers_.pc_status(8); access(value); } else { access(value); registers_.set_pc(value); if constexpr (flags.load_psr()) { registers_.set_status(value); } } } // If user mode was unnaturally forced, switch back to the actual // current operating mode. if(adopt_user_mode) { registers_.set_mode(original_mode); } // Finally throw an exception if necessary. if(address_error) { registers_.exception(); } else if(!accesses_succeeded) { registers_.exception(); } } void software_interrupt() { registers_.exception(); } void unknown() { registers_.exception(); } // Act as if no coprocessors present. template void perform(CoprocessorRegisterTransfer) { registers_.exception(); } template void perform(CoprocessorDataOperation) { registers_.exception(); } template void perform(CoprocessorDataTransfer) { registers_.exception(); } MemoryT bus; const Registers ®isters() const { return registers_; } /// Sets the expected address of the instruction after whichever is about to be executed. /// So it's PC+4 compared to most other systems. void set_pc(uint32_t pc) { registers_.set_pc(pc); } /// @returns The address of the instruction that should be fetched next. So as execution of each instruction /// begins, this will be +4 from the instruction being executed; at the end of the instruction it'll either still be +4 /// or else be some other address if a branch or exception has occurred. uint32_t pc() const { return registers_.pc(0); } private: Registers registers_; }; /// Provides an analogue of the @c OperationMapper -affiliated @c dispatch that also updates the /// executor's program counter appropriately. template void execute(uint32_t instruction, Executor &executor) { executor.set_pc(executor.pc() + 4); dispatch(instruction, executor); } }