// // 9918Base.hpp // Clock Signal // // Created by Thomas Harte on 14/12/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #ifndef TMS9918Base_hpp #define TMS9918Base_hpp #include "../../../Outputs/CRT/CRT.hpp" #include "../../../ClockReceiver/ClockReceiver.hpp" #include #include #include #include namespace TI { namespace TMS { constexpr bool is_sega_vdp(Personality p) { return p >= Personality::SMSVDP; } constexpr size_t memory_size(Personality p) { switch(p) { case TI::TMS::TMS9918A: case TI::TMS::SMSVDP: case TI::TMS::SMS2VDP: case TI::TMS::GGVDP: return 16 * 1024; case TI::TMS::MDVDP: return 64 * 1024; case TI::TMS::V9938: return 128 * 1024; case TI::TMS::V9958: return 192 * 1024; } } // The screen mode is a necessary predecessor to picking the line mode, // which is the thing latched per line. enum class ScreenMode { Blank, Text, MultiColour, ColouredText, Graphics, SMSMode4 }; enum class LineMode { Text, Character, Refresh, SMS }; enum class MemoryAccess { Read, Write, None }; // Temporary buffers collect a representation of each line prior to pixel serialisation. struct LineBuffer { // The line mode describes the proper timing diagram for this line. LineMode line_mode = LineMode::Text; // Holds the horizontal scroll position to apply to this line; // of those VDPs currently implemented, affects the Master System only. uint8_t latched_horizontal_scroll = 0; // The names array holds pattern names, as an offset into memory, and // potentially flags also. struct { size_t offset = 0; uint8_t flags = 0; } names[40]; // The patterns array holds tile patterns, corresponding 1:1 with names. // Four bytes per pattern is the maximum required by any // currently-implemented VDP. uint8_t patterns[40][4]; /* Horizontal layout (on a 342-cycle clock): 15 cycles right border 58 cycles blanking & sync 13 cycles left border ... i.e. to cycle 86, then: border up to first_pixel_output_column; pixels up to next_border_column; border up to the end. e.g. standard 256-pixel modes will want to set first_pixel_output_column = 86, next_border_column = 342. */ int first_pixel_output_column = 94; int next_border_column = 334; // An active sprite is one that has been selected for composition onto // this line. struct ActiveSprite { int index = 0; // The original in-table index of this sprite. int row = 0; // The row of the sprite that should be drawn. int x = 0; // The sprite's x position on screen. uint8_t image[4]; // Up to four bytes of image information. int shift_position = 0; // An offset representing how much of the image information has already been drawn. } active_sprites[8]; int active_sprite_slot = 0; // A pointer to the slot into which a new active sprite will be deposited, if required. bool sprites_stopped = false; // A special TMS feature is that a sentinel value can be used to prevent any further sprites // being evaluated for display. This flag determines whether the sentinel has yet been reached. void reset_sprite_collection(); }; struct LineBufferPointer { int row, column; }; template class Base { public: static uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) { uint32_t result = 0; uint8_t *const result_ptr = reinterpret_cast(&result); result_ptr[0] = r; result_ptr[1] = g; result_ptr[2] = b; result_ptr[3] = 0; return result; } protected: static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles after corresponding data read. // The default TMS palette. const uint32_t palette[16] = { palette_pack(0, 0, 0), palette_pack(0, 0, 0), palette_pack(33, 200, 66), palette_pack(94, 220, 120), palette_pack(84, 85, 237), palette_pack(125, 118, 252), palette_pack(212, 82, 77), palette_pack(66, 235, 245), palette_pack(252, 85, 84), palette_pack(255, 121, 120), palette_pack(212, 193, 84), palette_pack(230, 206, 128), palette_pack(33, 176, 59), palette_pack(201, 91, 186), palette_pack(204, 204, 204), palette_pack(255, 255, 255) }; Base(Personality p); const Personality personality_; Outputs::CRT::CRT crt_; TVStandard tv_standard_ = TVStandard::NTSC; // Holds the contents of this VDP's connected DRAM. std::vector ram_; // Holds the state of the DRAM/CRAM-access mechanism. uint16_t ram_pointer_ = 0; uint8_t read_ahead_buffer_ = 0; MemoryAccess queued_access_ = MemoryAccess::None; int cycles_until_access_ = 0; int minimum_access_column_ = 0; int vram_access_delay() { // This seems to be correct for all currently-modelled VDPs; // it's the delay between an external device scheduling a // read or write and the very first time that can occur // (though, in practice, it won't happen until the next // external slot after this number of cycles after the // device has requested the read or write). return 6; } // Holds the main status register. uint8_t status_ = 0; // Current state of programmer input. bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write. uint8_t low_write_ = 0; // Buffers the low byte of a write. // Various programmable flags. bool mode1_enable_ = false; bool mode2_enable_ = false; bool mode3_enable_ = false; bool blank_display_ = false; bool sprites_16x16_ = false; bool sprites_magnified_ = false; bool generate_interrupts_ = false; int sprite_height_ = 8; size_t pattern_name_address_ = 0; // i.e. address of the tile map. size_t colour_table_address_ = 0; // address of the colour map (if applicable). size_t pattern_generator_table_address_ = 0; // address of the tile contents. size_t sprite_attribute_table_address_ = 0; // address of the sprite list. size_t sprite_generator_table_address_ = 0; // address of the sprite contents. uint8_t text_colour_ = 0; uint8_t background_colour_ = 0; // This implementation of this chip officially accepts a 3.58Mhz clock, but runs // internally at 5.37Mhz. The following two help to maintain a lossless conversion // from the one to the other. int cycles_error_ = 0; HalfCycles half_cycles_before_internal_cycles(int internal_cycles); // Internal mechanisms for position tracking. int latched_column_ = 0; // A helper function to output the current border colour for // the number of cycles supplied. void output_border(int cycles, uint32_t cram_dot); // A struct to contain timing information for the current mode. struct { /* Vertical layout: Lines 0 to [pixel_lines]: standard data fetch and drawing will occur. ... to [first_vsync_line]: refresh fetches will occur and border will be output. .. to [2.5 or 3 lines later]: vertical sync is output. ... to [total lines - 1]: refresh fetches will occur and border will be output. ... for one line: standard data fetch will occur, without drawing. */ int total_lines = 262; int pixel_lines = 192; int first_vsync_line = 227; // Maximum number of sprite slots to populate; // if sprites beyond this number should be visible // then the appropriate status information will be set. int maximum_visible_sprites = 4; // Set the position, in cycles, of the two interrupts, // within a line. struct { int column = 4; int row = 193; } end_of_frame_interrupt_position; int line_interrupt_position = -1; // Enables or disabled the recognition of the sprite // list terminator, and sets the terminator value. bool allow_sprite_terminator = true; uint8_t sprite_terminator = 0xd0; } mode_timing_; uint8_t line_interrupt_target = 0xff; uint8_t line_interrupt_counter = 0; bool enable_line_interrupts_ = false; bool line_interrupt_pending_ = false; ScreenMode screen_mode_; LineBuffer line_buffers_[313]; void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row); // There is a delay between reading into the line buffer and outputting from there to the screen. That delay // is observeable because reading time affects availability of memory accesses and therefore time in which // to update sprites and tiles, but writing time affects when the palette is used and when the collision flag // may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap // with the beginning of writing the next, hence the two separate line buffers. LineBufferPointer read_pointer_, write_pointer_; // The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly // fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there // isn't the bandwidth for the read both write to occur simultaneously. The following buffer therefore keeps // track of pending collisions, for visual reproduction. struct CRAMDot { LineBufferPointer location; uint32_t value; }; std::vector upcoming_cram_dots_; // Extra information that affects the Master System output mode. struct { // Programmer-set flags. bool vertical_scroll_lock = false; bool horizontal_scroll_lock = false; bool hide_left_column = false; bool shift_sprites_8px_left = false; bool mode4_enable = false; uint8_t horizontal_scroll = 0; uint8_t vertical_scroll = 0; // The Master System's additional colour RAM. uint32_t colour_ram[32]; bool cram_is_selected = false; // Holds the vertical scroll position for this frame; this is latched // once and cannot dynamically be changed until the next frame. uint8_t latched_vertical_scroll = 0; size_t pattern_name_address; size_t sprite_attribute_table_address; size_t sprite_generator_table_address; } master_system_; void set_current_screen_mode() { if(blank_display_) { screen_mode_ = ScreenMode::Blank; return; } if(is_sega_vdp(personality_) && master_system_.mode4_enable) { screen_mode_ = ScreenMode::SMSMode4; mode_timing_.maximum_visible_sprites = 8; return; } mode_timing_.maximum_visible_sprites = 4; if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) { screen_mode_ = ScreenMode::ColouredText; return; } if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) { screen_mode_ = ScreenMode::Text; return; } if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) { screen_mode_ = ScreenMode::Graphics; return; } if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) { screen_mode_ = ScreenMode::MultiColour; return; } // TODO: undocumented TMS modes. screen_mode_ = ScreenMode::Blank; } void do_external_slot(int access_column) { // Don't do anything if the required time for the access to become executable // has yet to pass. if(access_column < minimum_access_column_) { return; } switch(queued_access_) { default: return; case MemoryAccess::Write: if(master_system_.cram_is_selected) { // Adjust the palette. In a Master System blue has a slightly different // scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html constexpr uint8_t rg_scale[] = {0, 85, 170, 255}; constexpr uint8_t b_scale[] = {0, 104, 170, 255}; master_system_.colour_ram[ram_pointer_ & 0x1f] = palette_pack( rg_scale[(read_ahead_buffer_ >> 0) & 3], rg_scale[(read_ahead_buffer_ >> 2) & 3], b_scale[(read_ahead_buffer_ >> 4) & 3] ); // Schedule a CRAM dot; this is scheduled for wherever it should appear // on screen. So it's wherever the output stream would be now. Which // is output_lag cycles ago from the point of view of the input stream. CRAMDot &dot = upcoming_cram_dots_.emplace_back(); dot.location.column = write_pointer_.column - output_lag; dot.location.row = write_pointer_.row; // Handle before this row conditionally; then handle after (or, more realistically, // exactly at the end of) naturally. if(dot.location.column < 0) { --dot.location.row; dot.location.column += 342; } dot.location.row += dot.location.column / 342; dot.location.column %= 342; dot.value = master_system_.colour_ram[ram_pointer_ & 0x1f]; } else { ram_[ram_pointer_ & 16383] = read_ahead_buffer_; } break; case MemoryAccess::Read: read_ahead_buffer_ = ram_[ram_pointer_ & 16383]; break; } ++ram_pointer_; queued_access_ = MemoryAccess::None; } /* Fetching routines follow below; they obey the following rules: 1) input is a start position and an end position; they should perform the proper operations for the period: start <= time < end. 2) times are measured relative to a 172-cycles-per-line clock (so: they directly count access windows on the TMS and Master System). 3) time 0 is the beginning of the access window immediately after the last pattern/data block fetch that would contribute to this line, in a normal 32-column mode. So: * it's cycle 309 on Mattias' TMS diagram; * it's cycle 1238 on his V9938 diagram; * it's after the last background render block in Mask of Destiny's Master System timing diagram. That division point was selected, albeit arbitrarily, because it puts all the tile fetches for a single line into the same [0, 171] period. 4) all of these functions are templated with a `use_end` parameter. That will be true if end is < 172, false otherwise. So functions can use it to eliminate should-exit-not checks, for the more usual path of execution. Provided for the benefit of the methods below: * the function external_slot(), which will perform any pending VRAM read/write. * the macros slot(n) and external_slot(n) which can be used to schedule those things inside a switch(start)-based implementation. All functions should just spool data to intermediary storage. This is because for most VDPs there is a decoupling between fetch pattern and output pattern, and it's neater to keep the same division for the exceptions. */ #define slot(n) \ if(use_end && end == n) return; \ [[fallthrough]]; \ case n #define external_slot(n) \ slot(n): do_external_slot((n)*2); #define external_slots_2(n) \ external_slot(n); \ external_slot(n+1); #define external_slots_4(n) \ external_slots_2(n); \ external_slots_2(n+2); #define external_slots_8(n) \ external_slots_4(n); \ external_slots_4(n+4); #define external_slots_16(n) \ external_slots_8(n); \ external_slots_8(n+8); #define external_slots_32(n) \ external_slots_16(n); \ external_slots_16(n+16); /*********************************************** TMS9918 Fetching Code ************************************************/ template void fetch_tms_refresh(int start, int end) { #define refresh(location) \ slot(location): \ external_slot(location+1); #define refreshes_2(location) \ refresh(location); \ refresh(location+2); #define refreshes_4(location) \ refreshes_2(location); \ refreshes_2(location+4); #define refreshes_8(location) \ refreshes_4(location); \ refreshes_4(location+8); switch(start) { default: assert(false); /* 44 external slots */ external_slots_32(0) external_slots_8(32) external_slots_4(40) /* 64 refresh/external slot pairs (= 128 windows) */ refreshes_8(44); refreshes_8(60); refreshes_8(76); refreshes_8(92); refreshes_8(108); refreshes_8(124); refreshes_8(140); refreshes_8(156); return; } #undef refreshes_8 #undef refreshes_4 #undef refreshes_2 #undef refresh } template void fetch_tms_text(int start, int end) { #define fetch_tile_name(location, column) slot(location): line_buffer.names[column].offset = ram_[row_base + column]; #define fetch_tile_pattern(location, column) slot(location): line_buffer.patterns[column][0] = ram_[row_offset + size_t(line_buffer.names[column].offset << 3)]; #define fetch_column(location, column) \ fetch_tile_name(location, column); \ external_slot(location+1); \ fetch_tile_pattern(location+2, column); #define fetch_columns_2(location, column) \ fetch_column(location, column); \ fetch_column(location+3, column+1); #define fetch_columns_4(location, column) \ fetch_columns_2(location, column); \ fetch_columns_2(location+6, column+2); #define fetch_columns_8(location, column) \ fetch_columns_4(location, column); \ fetch_columns_4(location+12, column+4); LineBuffer &line_buffer = line_buffers_[write_pointer_.row]; const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(write_pointer_.row >> 3) * 40); const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7)); switch(start) { default: assert(false); /* 47 external slots (= 47 windows) */ external_slots_32(0) external_slots_8(32) external_slots_4(40) external_slots_2(44) external_slot(46) /* 40 column fetches (= 120 windows) */ fetch_columns_8(47, 0); fetch_columns_8(71, 8); fetch_columns_8(95, 16); fetch_columns_8(119, 24); fetch_columns_8(143, 32); /* 5 more external slots */ external_slots_4(167); external_slot(171); return; } #undef fetch_columns_8 #undef fetch_columns_4 #undef fetch_columns_2 #undef fetch_column #undef fetch_tile_pattern #undef fetch_tile_name } template void fetch_tms_character(int start, int end) { #define sprite_fetch_coordinates(location, sprite) \ slot(location): \ slot(location+1): \ line_buffer.active_sprites[sprite].x = \ ram_[\ sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 2))\ ]; // This implementation doesn't refetch Y; it's unclear to me // whether it's refetched. #define sprite_fetch_graphics(location, sprite) \ slot(location): \ slot(location+1): \ slot(location+2): \ slot(location+3): {\ const uint8_t name = ram_[\ sprite_attribute_table_address_ & size_t(0x3f82 | (line_buffer.active_sprites[sprite].index << 2))\ ] & (sprites_16x16_ ? ~3 : ~0);\ line_buffer.active_sprites[sprite].image[2] = ram_[\ sprite_attribute_table_address_ & size_t(0x3f83 | (line_buffer.active_sprites[sprite].index << 2))\ ];\ line_buffer.active_sprites[sprite].x -= (line_buffer.active_sprites[sprite].image[2] & 0x80) >> 2;\ const size_t graphic_location = sprite_generator_table_address_ & size_t(0x3800 | (name << 3) | line_buffer.active_sprites[sprite].row); \ line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location];\ line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+16];\ } #define sprite_fetch_block(location, sprite) \ sprite_fetch_coordinates(location, sprite) \ sprite_fetch_graphics(location+2, sprite) #define sprite_y_read(location, sprite) \ slot(location): posit_sprite(sprite_selection_buffer, sprite, ram_[sprite_attribute_table_address_ & (((sprite) << 2) | 0x3f80)], write_pointer_.row); #define fetch_tile_name(column) line_buffer.names[column].offset = ram_[(row_base + column) & 0x3fff]; #define fetch_tile(column) {\ line_buffer.patterns[column][1] = ram_[(colour_base + size_t((line_buffer.names[column].offset << 3) >> colour_name_shift)) & 0x3fff]; \ line_buffer.patterns[column][0] = ram_[(pattern_base + size_t(line_buffer.names[column].offset << 3)) & 0x3fff]; \ } #define background_fetch_block(location, column, sprite) \ slot(location): fetch_tile_name(column) \ external_slot(location+1); \ slot(location+2): \ slot(location+3): fetch_tile(column) \ slot(location+4): fetch_tile_name(column+1) \ sprite_y_read(location+5, sprite); \ slot(location+6): \ slot(location+7): fetch_tile(column+1) \ slot(location+8): fetch_tile_name(column+2) \ sprite_y_read(location+9, sprite+1); \ slot(location+10): \ slot(location+11): fetch_tile(column+2) \ slot(location+12): fetch_tile_name(column+3) \ sprite_y_read(location+13, sprite+2); \ slot(location+14): \ slot(location+15): fetch_tile(column+3) LineBuffer &line_buffer = line_buffers_[write_pointer_.row]; LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines]; const size_t row_base = pattern_name_address_ & (size_t((write_pointer_.row << 2)&~31) | 0x3c00); size_t pattern_base = pattern_generator_table_address_; size_t colour_base = colour_table_address_; int colour_name_shift = 6; if(screen_mode_ == ScreenMode::Graphics) { // If this is high resolution mode, allow the row number to affect the pattern and colour addresses. pattern_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5)); colour_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5)); colour_base += size_t(write_pointer_.row & 7); colour_name_shift = 0; } else { colour_base &= size_t(0xffc0); pattern_base &= size_t(0x3800); } if(screen_mode_ == ScreenMode::MultiColour) { pattern_base += size_t((write_pointer_.row >> 2) & 7); } else { pattern_base += size_t(write_pointer_.row & 7); } switch(start) { default: assert(false); external_slots_2(0); sprite_fetch_block(2, 0); sprite_fetch_block(8, 1); sprite_fetch_coordinates(14, 2); external_slots_4(16); external_slot(20); sprite_fetch_graphics(21, 2); sprite_fetch_block(25, 3); slot(31): sprite_selection_buffer.reset_sprite_collection(); do_external_slot(31*2); external_slots_2(32); external_slot(34); sprite_y_read(35, 0); sprite_y_read(36, 1); sprite_y_read(37, 2); sprite_y_read(38, 3); sprite_y_read(39, 4); sprite_y_read(40, 5); sprite_y_read(41, 6); sprite_y_read(42, 7); background_fetch_block(43, 0, 8); background_fetch_block(59, 4, 11); background_fetch_block(75, 8, 14); background_fetch_block(91, 12, 17); background_fetch_block(107, 16, 20); background_fetch_block(123, 20, 23); background_fetch_block(139, 24, 26); background_fetch_block(155, 28, 29); return; } #undef background_fetch_block #undef fetch_tile #undef fetch_tile_name #undef sprite_y_read #undef sprite_fetch_block #undef sprite_fetch_graphics #undef sprite_fetch_coordinates } /*********************************************** Master System Fetching Code ************************************************/ template void fetch_sms(int start, int end) { #define sprite_fetch(sprite) {\ line_buffer.active_sprites[sprite].x = \ ram_[\ master_system_.sprite_attribute_table_address & size_t(0x3f80 | (line_buffer.active_sprites[sprite].index << 1))\ ] - (master_system_.shift_sprites_8px_left ? 8 : 0); \ const uint8_t name = ram_[\ master_system_.sprite_attribute_table_address & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 1))\ ] & (sprites_16x16_ ? ~1 : ~0);\ const size_t graphic_location = master_system_.sprite_generator_table_address & size_t(0x2000 | (name << 5) | (line_buffer.active_sprites[sprite].row << 2)); \ line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location]; \ line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+1]; \ line_buffer.active_sprites[sprite].image[2] = ram_[graphic_location+2]; \ line_buffer.active_sprites[sprite].image[3] = ram_[graphic_location+3]; \ } #define sprite_fetch_block(location, sprite) \ slot(location): \ slot(location+1): \ slot(location+2): \ slot(location+3): \ slot(location+4): \ slot(location+5): \ sprite_fetch(sprite);\ sprite_fetch(sprite+1); #define sprite_y_read(location, sprite) \ slot(location): \ posit_sprite(sprite_selection_buffer, sprite, ram_[master_system_.sprite_attribute_table_address & ((sprite) | 0x3f00)], write_pointer_.row); \ posit_sprite(sprite_selection_buffer, sprite+1, ram_[master_system_.sprite_attribute_table_address & ((sprite + 1) | 0x3f00)], write_pointer_.row); \ #define fetch_tile_name(column, row_info) {\ const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\ const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \ line_buffer.names[column].flags = ram_[address+1]; \ line_buffer.names[column].offset = size_t( \ (((line_buffer.names[column].flags&1) << 8) | ram_[address]) << 5 \ ) + row_info.sub_row[(line_buffer.names[column].flags&4) >> 2]; \ } #define fetch_tile(column) \ line_buffer.patterns[column][0] = ram_[line_buffer.names[column].offset]; \ line_buffer.patterns[column][1] = ram_[line_buffer.names[column].offset+1]; \ line_buffer.patterns[column][2] = ram_[line_buffer.names[column].offset+2]; \ line_buffer.patterns[column][3] = ram_[line_buffer.names[column].offset+3]; #define background_fetch_block(location, column, sprite, row_info) \ slot(location): fetch_tile_name(column, row_info) \ external_slot(location+1); \ slot(location+2): \ slot(location+3): \ slot(location+4): \ fetch_tile(column) \ fetch_tile_name(column+1, row_info) \ sprite_y_read(location+5, sprite); \ slot(location+6): \ slot(location+7): \ slot(location+8): \ fetch_tile(column+1) \ fetch_tile_name(column+2, row_info) \ sprite_y_read(location+9, sprite+2); \ slot(location+10): \ slot(location+11): \ slot(location+12): \ fetch_tile(column+2) \ fetch_tile_name(column+3, row_info) \ sprite_y_read(location+13, sprite+4); \ slot(location+14): \ slot(location+15): fetch_tile(column+3) // Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it. LineBuffer &line_buffer = line_buffers_[write_pointer_.row]; LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines]; const int horizontal_offset = (write_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) ? (line_buffer.latched_horizontal_scroll >> 3) : 0; // Limit address bits in use if this is a SMS2 mode. const bool is_tall_mode = mode_timing_.pixel_lines != 192; const size_t pattern_name_address = master_system_.pattern_name_address | (is_tall_mode ? 0x800 : 0); const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0; // Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't. // The programmer can opt out of applying vertical scrolling to the right-hand portion of the display. const int scrolled_row = (write_pointer_.row + master_system_.latched_vertical_scroll) % (is_tall_mode ? 256 : 224); struct RowInfo { size_t pattern_address_base; size_t sub_row[2]; }; const RowInfo scrolled_row_info = { (pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset, {size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)} }; RowInfo row_info; if(master_system_.vertical_scroll_lock) { row_info.pattern_address_base = (pattern_name_address & size_t(((write_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset; row_info.sub_row[0] = size_t((write_pointer_.row & 7) << 2); row_info.sub_row[1] = 28 ^ size_t((write_pointer_.row & 7) << 2); } else row_info = scrolled_row_info; // ... and do the actual fetching, which follows this routine: switch(start) { default: assert(false); sprite_fetch_block(0, 0); sprite_fetch_block(6, 2); external_slots_4(12); external_slot(16); sprite_fetch_block(17, 4); sprite_fetch_block(23, 6); slot(29): sprite_selection_buffer.reset_sprite_collection(); do_external_slot(29*2); external_slot(30); sprite_y_read(31, 0); sprite_y_read(32, 2); sprite_y_read(33, 4); sprite_y_read(34, 6); sprite_y_read(35, 8); sprite_y_read(36, 10); sprite_y_read(37, 12); sprite_y_read(38, 14); background_fetch_block(39, 0, 16, scrolled_row_info); background_fetch_block(55, 4, 22, scrolled_row_info); background_fetch_block(71, 8, 28, scrolled_row_info); background_fetch_block(87, 12, 34, scrolled_row_info); background_fetch_block(103, 16, 40, scrolled_row_info); background_fetch_block(119, 20, 46, scrolled_row_info); background_fetch_block(135, 24, 52, row_info); background_fetch_block(151, 28, 58, row_info); external_slots_4(167); return; } #undef background_fetch_block #undef fetch_tile #undef fetch_tile_name #undef sprite_y_read #undef sprite_fetch_block #undef sprite_fetch } #undef external_slot #undef slot uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr; bool asked_for_write_area_ = false; void draw_tms_character(int start, int end); void draw_tms_text(int start, int end); void draw_sms(int start, int end, uint32_t cram_dot); }; } } #endif /* TMS9918Base_hpp */