// // i8272.cpp // Clock Signal // // Created by Thomas Harte on 05/08/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #include "i8272.hpp" #include "../../Outputs/Log.hpp" using namespace Intel::i8272; i8272::i8272(BusHandler &bus_handler, Cycles clock_rate) : Storage::Disk::MFMController(clock_rate), bus_handler_(bus_handler) { posit_event(int(Event8272::CommandByte)); // TODO: implement DMA, etc. I have a vague intention to implement the IBM PC // one day, that should help to force that stuff. (void)bus_handler_; } ClockingHint::Preference i8272::preferred_clocking() const { const auto mfm_controller_preferred_clocking = Storage::Disk::MFMController::preferred_clocking(); if(mfm_controller_preferred_clocking != ClockingHint::Preference::None) return mfm_controller_preferred_clocking; return is_sleeping_ ? ClockingHint::Preference::None : ClockingHint::Preference::JustInTime; } void i8272::run_for(Cycles cycles) { Storage::Disk::MFMController::run_for(cycles); if(is_sleeping_) return; // check for an expired timer if(delay_time_ > 0) { if(cycles.as_integral() >= delay_time_) { delay_time_ = 0; posit_event(int(Event8272::Timer)); } else { delay_time_ -= cycles.as_integral(); } } // update seek status of any drives presently seeking if(drives_seeking_) { int drives_left = drives_seeking_; for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::Seeking) { drives_[c].step_rate_counter += cycles.as_integral(); auto steps = drives_[c].step_rate_counter / (8000 * step_rate_time_); drives_[c].step_rate_counter %= (8000 * step_rate_time_); while(steps--) { // Perform a step. int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1; LOG("Target " << PADDEC(0) << drives_[c].target_head_position << " versus believed " << int(drives_[c].head_position)); select_drive(c); get_drive().step(Storage::Disk::HeadPosition(direction)); if(drives_[c].target_head_position >= 0) drives_[c].head_position += direction; // Check for completion. if(seek_is_satisfied(c)) { drives_[c].phase = Drive::CompletedSeeking; drives_seeking_--; break; } } drives_left--; if(!drives_left) break; } } } // check for any head unloads if(head_timers_running_) { int timers_left = head_timers_running_; for(int c = 0; c < 8; c++) { int drive = (c >> 1); int head = c&1; if(drives_[drive].head_unload_delay[head] > 0) { if(cycles.as_integral() >= drives_[drive].head_unload_delay[head]) { drives_[drive].head_unload_delay[head] = 0; drives_[drive].head_is_loaded[head] = false; head_timers_running_--; } else { drives_[drive].head_unload_delay[head] -= cycles.as_integral(); } timers_left--; if(!timers_left) break; } } } // check for busy plus ready disabled if(is_executing_ && !get_drive().get_is_ready()) { posit_event(int(Event8272::NoLongerReady)); } is_sleeping_ = !delay_time_ && !drives_seeking_ && !head_timers_running_; if(is_sleeping_) update_clocking_observer(); } void i8272::write(int address, uint8_t value) { // don't consider attempted sets to the status register if(!address) return; // if not ready for commands, do nothing if(!status_.get(MainStatus::DataReady) || status_.get(MainStatus::DataIsToProcessor)) return; if(expects_input_) { input_ = value; has_input_ = true; status_.set(MainStatus::DataReady, false); } else { // accumulate latest byte in the command byte sequence command_.push_back(value); posit_event(int(Event8272::CommandByte)); } } uint8_t i8272::read(int address) { if(address) { if(result_stack_.empty()) return 0xff; uint8_t result = result_stack_.back(); result_stack_.pop_back(); if(result_stack_.empty()) posit_event(int(Event8272::ResultEmpty)); return result; } else { return status_.main(); } } #define BEGIN_SECTION() switch(resume_point_) { default: #define END_SECTION() } #define MS_TO_CYCLES(x) x * 8000 #define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = int(mask); return; case __LINE__: #define WAIT_FOR_TIME(ms) resume_point_ = __LINE__; interesting_event_mask_ = int(Event8272::Timer); delay_time_ = MS_TO_CYCLES(ms); is_sleeping_ = false; update_clocking_observer(); case __LINE__: if(delay_time_) return; #define PASTE(x, y) x##y #define CONCAT(x, y) PASTE(x, y) #define FIND_HEADER() \ set_data_mode(DataMode::Scanning); \ CONCAT(find_header, __LINE__): WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); \ if(event_type == int(Event::IndexHole)) { index_hole_limit_--; } \ else if(get_latest_token().type == Token::ID) goto CONCAT(header_found, __LINE__); \ \ if(index_hole_limit_) goto CONCAT(find_header, __LINE__); \ CONCAT(header_found, __LINE__): (void)0;\ #define FIND_DATA() \ set_data_mode(DataMode::Scanning); \ CONCAT(find_data, __LINE__): WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); \ if(event_type == int(Event::Token)) { \ if(get_latest_token().type == Token::Byte || get_latest_token().type == Token::Sync) goto CONCAT(find_data, __LINE__); \ } #define READ_HEADER() \ distance_into_section_ = 0; \ set_data_mode(DataMode::Reading); \ CONCAT(read_header, __LINE__): WAIT_FOR_EVENT(Event::Token); \ header_[distance_into_section_] = get_latest_token().byte_value; \ distance_into_section_++; \ if(distance_into_section_ < 6) goto CONCAT(read_header, __LINE__); \ #define SET_DRIVE_HEAD_MFM() \ active_drive_ = command_.target().drive; \ active_head_ = command_.target().head; \ select_drive(active_drive_); \ get_drive().set_head(active_head_); \ set_is_double_density(command_.target().mfm); #define WAIT_FOR_BYTES(n) \ distance_into_section_ = 0; \ CONCAT(wait_bytes, __LINE__): WAIT_FOR_EVENT(Event::Token); \ if(get_latest_token().type == Token::Byte) distance_into_section_++; \ if(distance_into_section_ < (n)) goto CONCAT(wait_bytes, __LINE__); #define LOAD_HEAD() \ if(!drives_[active_drive_].head_is_loaded[active_head_]) { \ drives_[active_drive_].head_is_loaded[active_head_] = true; \ WAIT_FOR_TIME(head_load_time_); \ } else { \ if(drives_[active_drive_].head_unload_delay[active_head_] > 0) { \ drives_[active_drive_].head_unload_delay[active_head_] = 0; \ head_timers_running_--; \ } \ } #define SCHEDULE_HEAD_UNLOAD() \ if(drives_[active_drive_].head_is_loaded[active_head_]) {\ if(drives_[active_drive_].head_unload_delay[active_head_] == 0) { \ head_timers_running_++; \ is_sleeping_ = false; \ update_clocking_observer(); \ } \ drives_[active_drive_].head_unload_delay[active_head_] = MS_TO_CYCLES(head_unload_time_);\ } void i8272::posit_event(int event_type) { if(event_type == int(Event::IndexHole)) index_hole_count_++; if(event_type == int(Event8272::NoLongerReady)) { status_.set(Status0::NotReady); goto abort; } if(!(interesting_event_mask_ & event_type)) return; interesting_event_mask_ &= ~event_type; BEGIN_SECTION(); // Resets busy and non-DMA execution, clears the command buffer, sets the data mode to scanning and flows // into wait_for_complete_command_sequence. wait_for_command: expects_input_ = false; set_data_mode(Storage::Disk::MFMController::DataMode::Scanning); status_.set(MainStatus::ReadOrWriteOngoing, false); status_.set(MainStatus::InNonDMAExecution, false); command_.clear(); // Sets the data request bit, and waits for a byte. Then sets the busy bit. Continues accepting bytes // until it has a quantity that make up an entire command, then resets the data request bit and // branches to that command. wait_for_complete_command_sequence: status_.set(MainStatus::DataReady, true); status_.set(MainStatus::DataIsToProcessor, false); WAIT_FOR_EVENT(Event8272::CommandByte) if(!command_.has_command()) { goto wait_for_complete_command_sequence; } status_.begin(command_); if(command_.has_geometry()) { cylinder_ = command_.geometry().cylinder; head_ = command_.geometry().head; sector_ = command_.geometry().sector; size_ = command_.geometry().size; } // If this is not clearly a command that's safe to carry out in parallel to a seek, end all seeks. is_access_command_ = command_.is_access(); if(is_access_command_) { status_.set(MainStatus::ReadOrWriteOngoing, true); for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::Seeking) { drives_[c].phase = Drive::NotSeeking; drives_seeking_--; } } // Establishes the drive and head being addressed, and whether in double density mode; populates the internal // cylinder, head, sector and size registers from the command stream. is_executing_ = true; if(!dma_mode_) { status_.set(MainStatus::InNonDMAExecution, true); } SET_DRIVE_HEAD_MFM(); LOAD_HEAD(); if(!get_drive().get_is_ready()) { status_.set(Status0::NotReady); goto abort; } } // Jump to the proper place. switch(command_.command()) { case Command::ReadData: case Command::ReadDeletedData: goto read_data; case Command::WriteData: case Command::WriteDeletedData: goto write_data; case Command::ReadTrack: goto read_track; case Command::ReadID: goto read_id; case Command::FormatTrack: goto format_track; case Command::ScanLow: goto scan_low; case Command::ScanLowOrEqual: goto scan_low_or_equal; case Command::ScanHighOrEqual: goto scan_high_or_equal; case Command::Recalibrate: goto recalibrate; case Command::Seek: goto seek; case Command::SenseInterruptStatus: goto sense_interrupt_status; case Command::Specify: goto specify; case Command::SenseDriveStatus: goto sense_drive_status; default: goto invalid; } // Decodes drive, head and density, loads the head, loads the internal cylinder, head, sector and size registers, // and searches for a sector that meets those criteria. If one is found, inspects the instruction in use and // jumps to an appropriate handler. read_write_find_header: // Sets a maximum index hole limit of 2 then performs a find header/read header loop, continuing either until // the index hole limit is breached or a sector is found with a cylinder, head, sector and size equal to the // values in the internal registers. index_hole_limit_ = 2; // LOG("Seeking " << PADDEC(0) << cylinder_ << " " << head_ " " << sector_ << " " << size_); find_next_sector: FIND_HEADER(); if(!index_hole_limit_) { // Two index holes have passed wihout finding the header sought. // LOG("Not found"); status_.set(Status1::NoData); goto abort; } index_hole_count_ = 0; // LOG("Header"); READ_HEADER(); if(index_hole_count_) { // This implies an index hole was sighted within the header. Error out. status_.set(Status1::EndOfCylinder); goto abort; } if(get_crc_generator().get_value()) { // This implies a CRC error in the header; mark as such but continue. status_.set(Status1::DataError); } // LOG("Considering << PADHEX(2) << header_[0] << " " << header_[1] << " " << header_[2] << " " << header_[3] << " [" << get_crc_generator().get_value() << "]"); if(header_[0] != cylinder_ || header_[1] != head_ || header_[2] != sector_ || header_[3] != size_) goto find_next_sector; // Branch to whatever is supposed to happen next // LOG("Proceeding"); switch(command_.command()) { default: case Command::ReadData: case Command::ReadDeletedData: goto read_data_found_header; case Command::WriteData: // write data case Command::WriteDeletedData: // write deleted data goto write_data_found_header; } // Performs the read data or read deleted data command. read_data: // LOG(PADHEX(2) << "Read [deleted] data [" // << int(command_[2]) << " " // << int(command_[3]) << " " // << int(command_[4]) << " " // << int(command_[5]) << " ... " // << int(command_[6]) << " " // << int(command_[8]) << "]"); read_next_data: goto read_write_find_header; // Finds the next data block and sets data mode to reading, setting an error flag if the on-disk deleted // flag doesn't match the sort the command was looking for. read_data_found_header: FIND_DATA(); // TODO: should Status2::DeletedControlMark be cleared? if(event_type == int(Event::Token)) { if(get_latest_token().type != Token::Data && get_latest_token().type != Token::DeletedData) { // Something other than a data mark came next, impliedly an ID or index mark. status_.set(Status1::MissingAddressMark); status_.set(Status2::MissingDataAddressMark); goto abort; // TODO: or read_next_data? } else { if((get_latest_token().type == Token::Data) != (command_.command() == Command::ReadData)) { if(!command_.target().skip_deleted) { // SK is not set; set the error flag but read this sector before finishing. status_.set(Status2::DeletedControlMark); } else { // SK is set; skip this sector. goto read_next_data; } } } } else { // An index hole appeared before the data mark. status_.set(Status1::EndOfCylinder); goto abort; // TODO: or read_next_data? } distance_into_section_ = 0; set_data_mode(Reading); // Waits for the next token, then supplies it to the CPU by: (i) setting data request and direction; and (ii) resetting // data request once the byte has been taken. Continues until all bytes have been read. // // TODO: consider DTL. read_data_get_byte: WAIT_FOR_EVENT(int(Event::Token) | int(Event::IndexHole)); if(event_type == int(Event::Token)) { result_stack_.push_back(get_latest_token().byte_value); distance_into_section_++; status_.set(MainStatus::DataReady, true); status_.set(MainStatus::DataIsToProcessor, true); WAIT_FOR_EVENT(int(Event8272::ResultEmpty) | int(Event::Token) | int(Event::IndexHole)); } switch(event_type) { case int(Event8272::ResultEmpty): // The caller read the byte in time; proceed as normal. status_.set(MainStatus::DataReady, false); if(distance_into_section_ < (128 << size_)) goto read_data_get_byte; break; case int(Event::Token): // The caller hasn't read the old byte yet and a new one has arrived status_.set(Status1::OverRun); goto abort; break; case int(Event::IndexHole): status_.set(Status1::EndOfCylinder); goto abort; break; } // read CRC, without transferring it, then check it WAIT_FOR_EVENT(Event::Token); WAIT_FOR_EVENT(Event::Token); if(get_crc_generator().get_value()) { // This implies a CRC error in the sector; mark as such and temrinate. status_.set(Status1::DataError); status_.set(Status2::DataCRCError); goto abort; } // check whether that's it: either the final requested sector has been read, or because // a sector that was [/wasn't] marked as deleted when it shouldn't [/should] have been if(sector_ != command_.geometry().end_of_track && !status_.get(Status2::DeletedControlMark)) { sector_++; goto read_next_data; } // For a final result phase, post the standard ST0, ST1, ST2, C, H, R, N goto post_st012chrn; write_data: // LOG(PADHEX(2) << "Write [deleted] data [" // << int(command_[2]) << " " // << int(command_[3]) << " " // << int(command_[4]) << " " // << int(command_[5]) << " ... " // << int(command_[6]) << " " // << int(command_[8]) << "]"); if(get_drive().get_is_read_only()) { status_.set(Status1::NotWriteable); goto abort; } write_next_data: goto read_write_find_header; write_data_found_header: WAIT_FOR_BYTES(get_is_double_density() ? 22 : 11); begin_writing(true); write_id_data_joiner(command_.command() == Command::WriteDeletedData, true); status_.set(MainStatus::DataIsToProcessor, false); status_.set(MainStatus::DataReady, true); expects_input_ = true; distance_into_section_ = 0; write_loop: WAIT_FOR_EVENT(Event::DataWritten); if(!has_input_) { status_.set(Status1::OverRun); goto abort; } write_byte(input_); has_input_ = false; distance_into_section_++; if(distance_into_section_ < (128 << size_)) { status_.set(MainStatus::DataReady, true); goto write_loop; } LOG("Wrote " << PADDEC(0) << distance_into_section_ << " bytes"); write_crc(); expects_input_ = false; WAIT_FOR_EVENT(Event::DataWritten); end_writing(); if(sector_ != command_.geometry().end_of_track) { sector_++; goto write_next_data; } goto post_st012chrn; // Performs the read ID command. read_id: // Establishes the drive and head being addressed, and whether in double density mode. // LOG(PADHEX(2) << "Read ID [" << int(command_[0]) << " " << int(command_[1]) << "]"); // Sets a maximum index hole limit of 2 then waits either until it finds a header mark or sees too many index holes. // If a header mark is found, reads in the following bytes that produce a header. Otherwise branches to data not found. index_hole_limit_ = 2; FIND_HEADER(); if(!index_hole_limit_) { status_.set(Status1::MissingAddressMark); goto abort; } READ_HEADER(); // Sets internal registers from the discovered header and posts the standard ST0, ST1, ST2, C, H, R, N. cylinder_ = header_[0]; head_ = header_[1]; sector_ = header_[2]; size_ = header_[3]; goto post_st012chrn; // Performs read track. read_track: // LOG(PADHEX(2) << "Read track [" // << int(command_[2]) << " " // << int(command_[3]) << " " // << int(command_[4]) << " " // << int(command_[5]) << "]"); // Wait for the index hole. WAIT_FOR_EVENT(Event::IndexHole); sector_ = 0; index_hole_limit_ = 2; // While not index hole again, stream all sector contents until EOT sectors have been read. read_track_next_sector: FIND_HEADER(); if(!index_hole_limit_) { if(!sector_) { status_.set(Status1::MissingAddressMark); goto abort; } else { goto post_st012chrn; } } READ_HEADER(); FIND_DATA(); distance_into_section_ = 0; status_.set(MainStatus::DataIsToProcessor, true); read_track_get_byte: WAIT_FOR_EVENT(Event::Token); result_stack_.push_back(get_latest_token().byte_value); distance_into_section_++; status_.set(MainStatus::DataReady, true); // TODO: other possible exit conditions; find a way to merge with the read_data version of this. WAIT_FOR_EVENT(int(Event8272::ResultEmpty)); status_.set(MainStatus::DataReady, false); if(distance_into_section_ < (128 << header_[2])) goto read_track_get_byte; sector_++; if(sector_ < command_.geometry().end_of_track) goto read_track_next_sector; goto post_st012chrn; // Performs format [/write] track. format_track: LOG("Format track"); if(get_drive().get_is_read_only()) { status_.set(Status1::NotWriteable); goto abort; } // Wait for the index hole. WAIT_FOR_EVENT(Event::IndexHole); index_hole_count_ = 0; begin_writing(true); // Write start-of-track. write_start_of_track(); WAIT_FOR_EVENT(Event::DataWritten); sector_ = 0; format_track_write_sector: write_id_joiner(); // Write the sector header, obtaining its contents // from the processor. status_.set(MainStatus::DataIsToProcessor, false); status_.set(MainStatus::DataReady, true); expects_input_ = true; distance_into_section_ = 0; format_track_write_header: WAIT_FOR_EVENT(int(Event::DataWritten) | int(Event::IndexHole)); switch(event_type) { case int(Event::IndexHole): status_.set(Status1::OverRun); goto abort; break; case int(Event::DataWritten): header_[distance_into_section_] = input_; write_byte(input_); has_input_ = false; distance_into_section_++; if(distance_into_section_ < 4) { status_.set(MainStatus::DataReady, true); goto format_track_write_header; } break; } LOG(PADHEX(2) << "W:" << int(header_[0]) << " " << int(header_[1]) << " " << int(header_[2]) << " " << int(header_[3]) << ", " << get_crc_generator().get_value()); write_crc(); // Write the sector body. write_id_data_joiner(false, false); write_n_bytes(128 << command_.format_specs().bytes_per_sector, command_.format_specs().filler); write_crc(); // Write the prescribed gap. write_n_bytes(command_.format_specs().gap3_length, get_is_double_density() ? 0x4e : 0xff); // Consider repeating. sector_++; if(sector_ < command_.format_specs().sectors_per_track && !index_hole_count_) goto format_track_write_sector; // Otherwise, pad out to the index hole. format_track_pad: write_byte(get_is_double_density() ? 0x4e : 0xff); WAIT_FOR_EVENT(int(Event::DataWritten) | int(Event::IndexHole)); if(event_type != int(Event::IndexHole)) goto format_track_pad; end_writing(); cylinder_ = header_[0]; head_ = header_[1]; sector_ = header_[2] + 1; size_ = header_[3]; goto post_st012chrn; scan_low: ERROR("Scan low unimplemented!!"); goto wait_for_command; scan_low_or_equal: ERROR("Scan low or equal unimplemented!!"); goto wait_for_command; scan_high_or_equal: ERROR("Scan high or equal unimplemented!!"); goto wait_for_command; // Performs both recalibrate and seek commands. These commands occur asynchronously, so the actual work // occurs in ::run_for; this merely establishes that seeking should be ongoing. recalibrate: seek: { const int drive = command_.target().drive; select_drive(drive); // Increment the seeking count if this drive wasn't already seeking. if(drives_[drive].phase != Drive::Seeking) { drives_seeking_++; is_sleeping_ = false; update_clocking_observer(); } // Set currently seeking, with a step to occur right now (yes, it sounds like jamming these // in could damage your drive motor). drives_[drive].phase = Drive::Seeking; drives_[drive].step_rate_counter = 8000 * step_rate_time_; drives_[drive].steps_taken = 0; drives_[drive].seek_failed = false; status_.start_seek(command_.target().drive); // If this is a seek, set the processor-supplied target location; otherwise it is a recalibrate, // which means resetting the current state now but aiming to hit '-1' (which the stepping code // up in run_for understands to mean 'keep going until track 0 is active'). if(command_.command() != Command::Recalibrate) { drives_[drive].target_head_position = command_.seek_target(); LOG(PADHEX(2) << "Seek to " << int(command_.seek_target())); } else { drives_[drive].target_head_position = -1; drives_[drive].head_position = 0; LOG("Recalibrate"); } // Check whether any steps are even needed; if not then mark as completed already. if(seek_is_satisfied(drive)) { drives_[drive].phase = Drive::CompletedSeeking; drives_seeking_--; } } goto wait_for_command; // Performs sense interrupt status. sense_interrupt_status: LOG("Sense interrupt status"); { // Find the first drive that is in the CompletedSeeking state. int found_drive = -1; for(int c = 0; c < 4; c++) { if(drives_[c].phase == Drive::CompletedSeeking) { found_drive = c; break; } } // If a drive was found, return its results. Otherwise return a single 0x80. if(found_drive != -1) { drives_[found_drive].phase = Drive::NotSeeking; status_.end_sense_interrupt_status(found_drive, 0); status_.set(Status0::SeekEnded); result_stack_ = { drives_[found_drive].head_position, status_[0]}; } else { result_stack_ = { 0x80 }; } } goto post_result; // Performs specify. specify: // Just store the values, and terminate the command. LOG("Specify"); step_rate_time_ = command_.specify_specs().step_rate_time; head_unload_time_ = command_.specify_specs().head_unload_time; head_load_time_ = command_.specify_specs().head_load_time; if(!head_unload_time_) head_unload_time_ = 16; if(!head_load_time_) head_load_time_ = 2; dma_mode_ = command_.specify_specs().use_dma; goto wait_for_command; sense_drive_status: LOG("Sense drive status"); { int drive = command_.target().drive; select_drive(drive); result_stack_= { uint8_t( (command_.drive_head()) | // drive and head number 0x08 | // single sided (get_drive().get_is_track_zero() ? 0x10 : 0x00) | (get_drive().get_is_ready() ? 0x20 : 0x00) | (get_drive().get_is_read_only() ? 0x40 : 0x00) ) }; } goto post_result; // Performs any invalid command. invalid: // A no-op, but posts ST0 (but which ST0?) result_stack_ = {0x80}; goto post_result; // Sets abnormal termination of the current command and proceeds to an ST0, ST1, ST2, C, H, R, N result phase. abort: end_writing(); status_.set(Status0::AbnormalTermination); goto post_st012chrn; // Posts ST0, ST1, ST2, C, H, R and N as a result phase. post_st012chrn: SCHEDULE_HEAD_UNLOAD(); result_stack_ = {size_, sector_, head_, cylinder_, status_[2], status_[1], status_[0]}; goto post_result; // Posts whatever is in result_stack_ as a result phase. Be aware that it is a stack, so the // last thing in it will be returned first. post_result: // LOGNBR(PADHEX(2) << "Result to " << int(command_[0] & 0x1f) << ", main " << int(main_status_) << "; "); // for(std::size_t c = 0; c < result_stack_.size(); c++) { // LOGNBR(" " << int(result_stack_[result_stack_.size() - 1 - c])); // } // LOGNBR(std::endl); // Set ready to send data to the processor, no longer in non-DMA execution phase. is_executing_ = false; status_.set(MainStatus::InNonDMAExecution, false); status_.set(MainStatus::DataReady, true); status_.set(MainStatus::DataIsToProcessor, true); // The actual stuff of unwinding result_stack_ is handled by ::read; wait // until the processor has read all result bytes. WAIT_FOR_EVENT(Event8272::ResultEmpty); // Reset data direction and end the command. goto wait_for_command; END_SECTION() } bool i8272::seek_is_satisfied(int drive) { return (drives_[drive].target_head_position == drives_[drive].head_position) || (drives_[drive].target_head_position == -1 && get_drive().get_is_track_zero()); } void i8272::set_dma_acknowledge(bool) { } void i8272::set_terminal_count(bool) { } void i8272::set_data_input(uint8_t) { } uint8_t i8272::get_data_output() { return 0xff; }