// // ZX8081.cpp // Clock Signal // // Created by Thomas Harte on 04/06/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #include "ZX8081.hpp" #include "../../MachineTypes.hpp" #include "../../../Components/AY38910/AY38910.hpp" #include "../../../Processors/Z80/Z80.hpp" #include "../../../Storage/Tape/Tape.hpp" #include "../../../Storage/Tape/Parsers/ZX8081.hpp" #include "../../../ClockReceiver/ForceInline.hpp" #include "../../Utility/MemoryFuzzer.hpp" #include "../../Utility/Typer.hpp" #include "../../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp" #include "../../../Analyser/Static/ZX8081/Target.hpp" #include "../Keyboard/Keyboard.hpp" #include "Video.hpp" #include #include #include #include namespace { // The clock rate is 3.25Mhz. constexpr unsigned int ZX8081ClockRate = 3250000; } // TODO: // Quiksilva sound support: // 7FFFh.W PSG index // 7FFEh.R/W PSG data namespace Sinclair { namespace ZX8081 { enum ROMType: uint8_t { ZX80 = 0, ZX81 }; using CharacterMapper = Sinclair::ZX::Keyboard::CharacterMapper; template class ConcreteMachine: public MachineTypes::TimedMachine, public MachineTypes::ScanProducer, public MachineTypes::AudioProducer, public MachineTypes::MediaTarget, public MachineTypes::MappedKeyboardMachine, public Configurable::Device, public Utility::TypeRecipient, public CPU::Z80::BusHandler, public Machine { public: ConcreteMachine(const Analyser::Static::ZX8081::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) : Utility::TypeRecipient(keyboard_machine()), z80_(*this), keyboard_(keyboard_machine()), keyboard_mapper_(keyboard_machine()), tape_player_(ZX8081ClockRate), ay_(GI::AY38910::Personality::AY38910, audio_queue_), speaker_(ay_) { set_clock_rate(ZX8081ClockRate); speaker_.set_input_rate(float(ZX8081ClockRate) / 2.0f); const bool use_zx81_rom = target.is_ZX81 || target.ZX80_uses_ZX81_ROM; const ROM::Name rom_name = use_zx81_rom ? ROM::Name::ZX81 : ROM::Name::ZX80; const ROM::Request request(rom_name); auto roms = rom_fetcher(request); if(!request.validate(roms)) { throw ROMMachine::Error::MissingROMs; } rom_ = std::move(roms.find(rom_name)->second); rom_mask_ = uint16_t(rom_.size() - 1); switch(target.memory_model) { case Analyser::Static::ZX8081::Target::MemoryModel::Unexpanded: ram_.resize(1024); ram_base_ = 16384; ram_mask_ = 1023; break; case Analyser::Static::ZX8081::Target::MemoryModel::SixteenKB: ram_.resize(16384); ram_base_ = 16384; ram_mask_ = 16383; break; case Analyser::Static::ZX8081::Target::MemoryModel::SixtyFourKB: ram_.resize(65536); ram_base_ = 8192; ram_mask_ = 65535; break; } Memory::Fuzz(ram_); // Ensure valid initial key state. clear_all_keys(); if(!target.loading_command.empty()) { type_string(target.loading_command); should_autorun_ = true; } insert_media(target.media); } ~ConcreteMachine() { audio_queue_.flush(); } forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) { const HalfCycles previous_counter = horizontal_counter_; horizontal_counter_ += cycle.length; time_since_ay_update_ += cycle.length; if(previous_counter < vsync_start_ && horizontal_counter_ >= vsync_start_) { video_.run_for(vsync_start_ - previous_counter); set_hsync(true); line_counter_ = (line_counter_ + 1) & 7; if(nmi_is_enabled_) { z80_.set_non_maskable_interrupt_line(true); } video_.run_for(horizontal_counter_ - vsync_start_); } else if(previous_counter < vsync_end_ && horizontal_counter_ >= vsync_end_) { video_.run_for(vsync_end_ - previous_counter); set_hsync(false); if(nmi_is_enabled_) { z80_.set_non_maskable_interrupt_line(false); z80_.set_wait_line(false); } video_.run_for(horizontal_counter_ - vsync_end_); } else { video_.run_for(cycle.length); } if constexpr (is_zx81) horizontal_counter_ %= HalfCycles(Cycles(207)); if(!tape_advance_delay_) { tape_player_.run_for(cycle.length); } else { tape_advance_delay_ = std::max(tape_advance_delay_ - cycle.length, HalfCycles(0)); } if(nmi_is_enabled_ && !z80_.get_halt_line() && z80_.get_non_maskable_interrupt_line()) { z80_.set_wait_line(true); } if(!cycle.is_terminal()) { return Cycles(0); } const uint16_t address = cycle.address ? *cycle.address : 0; bool is_opcode_read = false; switch(cycle.operation) { case CPU::Z80::PartialMachineCycle::Output: if(!nmi_is_enabled_) { line_counter_ = 0; set_vsync(false); } if(!(address & 2)) nmi_is_enabled_ = false; if(!(address & 1)) nmi_is_enabled_ = is_zx81; if(is_zx81 && !nmi_is_enabled_) z80_.set_wait_line(false); // The below emulates the ZonX AY expansion device. if constexpr (is_zx81) { if((address&0xef) == 0xcf) { ay_set_register(*cycle.value); } else if((address&0xef) == 0x0f) { ay_set_data(*cycle.value); } } break; case CPU::Z80::PartialMachineCycle::Input: { uint8_t value = 0xff; if(!(address&1)) { if(!nmi_is_enabled_) set_vsync(true); value &= keyboard_.read(address); value &= ~(tape_player_.get_input() ? 0x00 : 0x80); } // The below emulates the ZonX AY expansion device. if constexpr (is_zx81) { if((address&0xef) == 0xcf) { value &= ay_read_data(); } } *cycle.value = value; } break; case CPU::Z80::PartialMachineCycle::Interrupt: // resetting event is M1 and IOREQ both simultaneously having leading edges; // that happens 2 cycles before the end of INTACK. So the timer was reset and // now has advanced twice. horizontal_counter_ = HalfCycles(2); *cycle.value = 0xff; break; case CPU::Z80::PartialMachineCycle::Refresh: // The ZX80 and 81 signal an interrupt while refresh is active and bit 6 of the refresh // address is low. The Z80 signals a refresh, providing the refresh address during the // final two cycles of an opcode fetch. Therefore communicate a transient signalling // of the IRQ line if necessary. if(!(address & 0x40)) { z80_.set_interrupt_line(true, Cycles(-2)); z80_.set_interrupt_line(false); } if(has_latched_video_byte_) { std::size_t char_address = size_t((address & 0xfe00) | ((latched_video_byte_ & 0x3f) << 3) | line_counter_); const uint8_t mask = (latched_video_byte_ & 0x80) ? 0x00 : 0xff; if(char_address < ram_base_) { latched_video_byte_ = rom_[char_address & rom_mask_] ^ mask; } else { latched_video_byte_ = ram_[address & ram_mask_] ^ mask; } video_.output_byte(latched_video_byte_); has_latched_video_byte_ = false; } break; case CPU::Z80::PartialMachineCycle::ReadOpcode: // Check for use of the fast tape hack. if(use_fast_tape_hack_ && address == tape_trap_address_) { const uint64_t prior_offset = tape_player_.get_tape()->get_offset(); const int next_byte = parser_.get_next_byte(tape_player_.get_tape()); if(next_byte != -1) { const uint16_t hl = z80_.value_of(CPU::Z80::Register::HL); ram_[hl & ram_mask_] = uint8_t(next_byte); *cycle.value = 0x00; z80_.set_value_of(CPU::Z80::Register::ProgramCounter, tape_return_address_ - 1); // Assume that having read one byte quickly, we're probably going to be asked to read // another shortly. Therefore, temporarily disable the tape motor for 1000 cycles in order // to avoid fighting with real time. This is a stop-gap fix. tape_advance_delay_ = 1000; return 0; } else { tape_player_.get_tape()->set_offset(prior_offset); } } if(should_autorun_ && address == finished_load_address_) { type_string(is_zx81 ? "r \n" : "r\n "); // Spaces here are not especially scientific; they merely ensure sufficient pauses for both the ZX80 and 81, empirically. should_autorun_ = false; } // Check for automatic tape control. if(use_automatic_tape_motor_control_) { tape_player_.set_motor_control((address >= automatic_tape_motor_start_address_) && (address < automatic_tape_motor_end_address_)); } is_opcode_read = true; [[fallthrough]]; case CPU::Z80::PartialMachineCycle::Read: if(address < ram_base_) { *cycle.value = rom_[address & rom_mask_]; } else { const uint8_t value = ram_[address & ram_mask_]; // If this is an M1 cycle reading from above the 32kb mark and HALT is not // currently active, latch for video output and return a NOP. Otherwise, // just return the value as read. if(is_opcode_read && address&0x8000 && !(value & 0x40) && !z80_.get_halt_line()) { latched_video_byte_ = value; has_latched_video_byte_ = true; *cycle.value = 0; } else *cycle.value = value; } break; case CPU::Z80::PartialMachineCycle::Write: if(address >= ram_base_) { ram_[address & ram_mask_] = *cycle.value; } break; default: break; } if(typer_) typer_->run_for(cycle.length); return HalfCycles(0); } void flush_output(int outputs) final { if(outputs & Output::Video) { video_.flush(); } if constexpr (is_zx81) { if(outputs & Output::Audio) { update_audio(); audio_queue_.perform(); } } } void set_scan_target(Outputs::Display::ScanTarget *scan_target) final { video_.set_scan_target(scan_target); } Outputs::Display::ScanStatus get_scaled_scan_status() const final { return video_.get_scaled_scan_status(); } Outputs::Speaker::Speaker *get_speaker() final { return is_zx81 ? &speaker_ : nullptr; } void run_for(const Cycles cycles) final { z80_.run_for(cycles); } bool insert_media(const Analyser::Static::Media &media) final { if(!media.tapes.empty()) { tape_player_.set_tape(media.tapes.front()); } set_use_fast_tape(); return !media.tapes.empty(); } void type_string(const std::string &string) final { Utility::TypeRecipient::add_typer(string); } bool can_type(char c) const final { return Utility::TypeRecipient::can_type(c); } // MARK: - Keyboard void set_key_state(uint16_t key, bool is_pressed) final { keyboard_.set_key_state(key, is_pressed); } void clear_all_keys() final { keyboard_.clear_all_keys(); } static constexpr Sinclair::ZX::Keyboard::Machine keyboard_machine() { return is_zx81 ? Sinclair::ZX::Keyboard::Machine::ZX81 : Sinclair::ZX::Keyboard::Machine::ZX80; } // MARK: - Tape control void set_use_automatic_tape_motor_control(bool enabled) { use_automatic_tape_motor_control_ = enabled; if(!enabled) { tape_player_.set_motor_control(false); } } void set_tape_is_playing(bool is_playing) final { tape_player_.set_motor_control(is_playing); } bool get_tape_is_playing() final { return tape_player_.get_motor_control(); } // MARK: - Typer timing HalfCycles get_typer_delay(const std::string &) const final { return z80_.get_is_resetting() ? Cycles(7'000'000) : Cycles(0); } HalfCycles get_typer_frequency() const final { return Cycles(146'250); } KeyboardMapper *get_keyboard_mapper() final { return &keyboard_mapper_; } // MARK: - Configuration options. std::unique_ptr get_options() final { auto options = std::make_unique(Configurable::OptionsType::UserFriendly); // OptionsType is arbitrary, but not optional. options->automatic_tape_motor_control = use_automatic_tape_motor_control_; options->quickload = allow_fast_tape_hack_; return options; } void set_options(const std::unique_ptr &str) { const auto options = dynamic_cast(str.get()); set_use_automatic_tape_motor_control(options->automatic_tape_motor_control); allow_fast_tape_hack_ = options->quickload; set_use_fast_tape(); } private: CPU::Z80::Processor z80_; Video video_; // If fast tape loading is enabled then the PC will be trapped at tape_trap_address_; // the emulator will then do a high-level reinterpretation of the standard ZX80/81 reading // of a single byte, and the next thing executed will be at tape_return_address_; static constexpr uint16_t tape_trap_address_ = is_zx81 ? 0x37c : 0x220; static constexpr uint16_t tape_return_address_ = is_zx81 ? 0x380 : 0x248; // If automatic tape motor control is enabled then the tape will be permitted to play any time // the program counter is >= automatic_tape_motor_start_address_ and < automatic_tape_motor_end_address_. static constexpr uint16_t automatic_tape_motor_start_address_ = is_zx81 ? 0x340 : 0x206; static constexpr uint16_t automatic_tape_motor_end_address_ = is_zx81 ? 0x3c3 : 0x24d; // When automatically loading, if the PC gets to the finished_load_address_ in order to print 0/0 // (so it's anything that indicates that loading completed, but the program did not autorun) then the // emulator will automatically RUN whatever has been loaded. static constexpr uint16_t finished_load_address_ = is_zx81 ? 0x6d1 : // ZX81: this is the routine that prints 0/0 (i.e. success). 0x203; // ZX80: this is the JR that exits the ZX80's LOAD and returns to MAIN-EXEC. bool should_autorun_ = false; std::vector ram_; uint16_t ram_mask_, ram_base_; std::vector rom_; uint16_t rom_mask_; bool vsync_ = false, hsync_ = false; int line_counter_ = 0; Sinclair::ZX::Keyboard::Keyboard keyboard_; Sinclair::ZX::Keyboard::KeyboardMapper keyboard_mapper_; HalfClockReceiver tape_player_; Storage::Tape::ZX8081::Parser parser_; bool nmi_is_enabled_ = false; static constexpr auto vsync_start_ = is_zx81 ? HalfCycles(32) : HalfCycles(26); static constexpr auto vsync_end_ = is_zx81 ? HalfCycles(64) : HalfCycles(66); HalfCycles horizontal_counter_; uint8_t latched_video_byte_ = 0; bool has_latched_video_byte_ = false; bool use_fast_tape_hack_ = false; bool allow_fast_tape_hack_ = false; void set_use_fast_tape() { use_fast_tape_hack_ = allow_fast_tape_hack_ && tape_player_.has_tape(); } bool use_automatic_tape_motor_control_ = true; HalfCycles tape_advance_delay_ = 0; // MARK: - Video inline void set_vsync(bool sync) { vsync_ = sync; update_sync(); } inline void set_hsync(bool sync) { hsync_ = sync; update_sync(); } inline void update_sync() { video_.set_sync(vsync_ || hsync_); } // MARK: - Audio Concurrency::AsyncTaskQueue audio_queue_; using AY = GI::AY38910::AY38910; AY ay_; Outputs::Speaker::PullLowpass speaker_; HalfCycles time_since_ay_update_; inline void ay_set_register(uint8_t value) { update_audio(); GI::AY38910::Utility::select_register(ay_, value); } inline void ay_set_data(uint8_t value) { update_audio(); GI::AY38910::Utility::write_data(ay_, value); } inline uint8_t ay_read_data() { update_audio(); return GI::AY38910::Utility::read(ay_); } inline void update_audio() { speaker_.run_for(audio_queue_, time_since_ay_update_.divide_cycles(Cycles(2))); } }; } } using namespace Sinclair::ZX8081; // See header; constructs and returns an instance of the ZX80 or 81. std::unique_ptr Machine::ZX8081(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) { const auto zx_target = dynamic_cast(target); // Instantiate the correct type of machine. if(zx_target->is_ZX81) return std::make_unique>(*zx_target, rom_fetcher); else return std::make_unique>(*zx_target, rom_fetcher); }