// // Z80Storage.cpp // Clock Signal // // Created by Thomas Harte on 04/09/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #include "../Z80.hpp" #include using namespace CPU::Z80; ProcessorStorage::ProcessorStorage() { set_flags(0xff); } // Elemental bus operations #define ReadOpcodeStart() PartialMachineCycle(PartialMachineCycle::ReadOpcodeStart, HalfCycles(3), &pc_.full, &operation_, false) #define ReadOpcodeWait(f) PartialMachineCycle(PartialMachineCycle::ReadOpcodeWait, HalfCycles(2), &pc_.full, &operation_, f) #define ReadOpcodeEnd() PartialMachineCycle(PartialMachineCycle::ReadOpcode, HalfCycles(1), &pc_.full, &operation_, false) #define Refresh() PartialMachineCycle(PartialMachineCycle::Refresh, HalfCycles(4), &refresh_addr_.full, nullptr, false) #define ReadStart(addr, val) PartialMachineCycle(PartialMachineCycle::ReadStart, HalfCycles(3), &addr.full, &val, false) #define ReadWait(addr, val) PartialMachineCycle(PartialMachineCycle::ReadWait, HalfCycles(2), &addr.full, &val, true) #define ReadEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Read, HalfCycles(3), &addr.full, &val, false) #define WriteStart(addr, val) PartialMachineCycle(PartialMachineCycle::WriteStart,HalfCycles(3), &addr.full, &val, false) #define WriteWait(addr, val) PartialMachineCycle(PartialMachineCycle::WriteWait, HalfCycles(2), &addr.full, &val, true) #define WriteEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Write, HalfCycles(3), &addr.full, &val, false) #define InputStart(addr, val) PartialMachineCycle(PartialMachineCycle::InputStart, HalfCycles(3), &addr.full, &val, false) #define InputWait(addr, val, f) PartialMachineCycle(PartialMachineCycle::InputWait, HalfCycles(2), &addr.full, &val, f) #define InputEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Input, HalfCycles(3), &addr.full, &val, false) #define OutputStart(addr, val) PartialMachineCycle(PartialMachineCycle::OutputStart, HalfCycles(3), &addr.full, &val, false) #define OutputWait(addr, val, f) PartialMachineCycle(PartialMachineCycle::OutputWait, HalfCycles(2), &addr.full, &val, f) #define OutputEnd(addr, val) PartialMachineCycle(PartialMachineCycle::Output, HalfCycles(3), &addr.full, &val, false) #define IntAckStart(length, val) PartialMachineCycle(PartialMachineCycle::InterruptStart, HalfCycles(length), &pc_.full, &val, false) #define IntWait(val) PartialMachineCycle(PartialMachineCycle::InterruptWait, HalfCycles(2), &pc_.full, &val, true) #define IntAckEnd(val) PartialMachineCycle(PartialMachineCycle::Interrupt, HalfCycles(3), &pc_.full, &val, false) // A wrapper to express a bus operation as a micro-op #define BusOp(op) {MicroOp::BusOperation, nullptr, nullptr, op} // Compound bus operations, as micro-ops #define InternalOperation(len) {MicroOp::BusOperation, nullptr, nullptr, {PartialMachineCycle::Internal, HalfCycles(len), &last_address_bus_, nullptr, false}} #define Read(addr, val) BusOp(ReadStart(addr, val)), BusOp(ReadWait(addr, val)), BusOp(ReadEnd(addr, val)) #define Write(addr, val) BusOp(WriteStart(addr, val)), BusOp(WriteWait(addr, val)), BusOp(WriteEnd(addr, val)) #define Input(addr, val) BusOp(InputStart(addr, val)), BusOp(InputWait(addr, val, false)), BusOp(InputWait(addr, val, true)), BusOp(InputEnd(addr, val)) #define Output(addr, val) BusOp(OutputStart(addr, val)), BusOp(OutputWait(addr, val, false)), BusOp(OutputWait(addr, val, true)), BusOp(OutputEnd(addr, val)) /// A sequence is a series of micro-ops that ends in a move-to-next-program operation. #define Sequence(...) { __VA_ARGS__, {MicroOp::MoveToNextProgram} } // Assumption made: those instructions that are rated with an opcode fetch greater than four cycles spend the extra time // providing a lengthened refresh cycle. I assume this because the CPU doesn't have foresight and presumably spends the // normal refresh time decoding. So if it gets to cycle four and realises it has two more cycles of work, I have assumed // it simply maintains the refresh state for an extra two cycles. /* The following are helper macros that define common parts of instructions */ #define Inc16(r) {(&r == &pc_) ? MicroOp::IncrementPC : MicroOp::Increment16, &r.full} #define Inc8NoFlags(r) {MicroOp::Increment8NoFlags, &r} #define ReadInc(addr, val) Read(addr, val), Inc16(addr) #define WriteInc(addr, val) Write(addr, val), {MicroOp::Increment16, &addr.full} #define Read16Inc(addr, val) ReadInc(addr, val.halves.low), ReadInc(addr, val.halves.high) #define Read16(addr, val) ReadInc(addr, val.halves.low), Read(addr, val.halves.high) #define Write16(addr, val) WriteInc(addr, val.halves.low), Write(addr, val.halves.high) #define INDEX() {MicroOp::IndexedPlaceHolder}, ReadInc(pc_, temp8_), InternalOperation(10), {MicroOp::CalculateIndexAddress, &index} #define FINDEX() {MicroOp::IndexedPlaceHolder}, ReadInc(pc_, temp8_), {MicroOp::CalculateIndexAddress, &index} #define INDEX_ADDR() (add_offsets ? memptr_ : index) #define Push(x) {MicroOp::Decrement16, &sp_.full}, Write(sp_, x.halves.high), {MicroOp::Decrement16, &sp_.full}, Write(sp_, x.halves.low) #define Pop(x) Read(sp_, x.halves.low), {MicroOp::Increment16, &sp_.full}, Read(sp_, x.halves.high), {MicroOp::Increment16, &sp_.full} /* The following are actual instructions */ #define NOP { {MicroOp::MoveToNextProgram} } #define JP(cc) Sequence(Read16Inc(pc_, memptr_), {MicroOp::cc}, {MicroOp::Move16, &memptr_.full, &pc_.full}) #define CALL(cc) Sequence(ReadInc(pc_, memptr_.halves.low), {MicroOp::cc, conditional_call_untaken_program_.data()}, ReadInc(pc_, memptr_.halves.high), InternalOperation(2), Push(pc_), {MicroOp::Move16, &memptr_.full, &pc_.full}) #define RET(cc) Sequence(InternalOperation(2), {MicroOp::cc}, Pop(memptr_), {MicroOp::Move16, &memptr_.full, &pc_.full}) #define JR(cc) Sequence(ReadInc(pc_, temp8_), {MicroOp::cc}, InternalOperation(10), {MicroOp::CalculateIndexAddress, &pc_.full}, {MicroOp::Move16, &memptr_.full, &pc_.full}) #define RST() Sequence(InternalOperation(2), {MicroOp::CalculateRSTDestination}, Push(pc_), {MicroOp::Move16, &memptr_.full, &pc_.full}) #define LD(a, b) Sequence({MicroOp::Move8, &b, &a}) #define LD_GROUP(r, ri) \ LD(r, bc_.halves.high), LD(r, bc_.halves.low), LD(r, de_.halves.high), LD(r, de_.halves.low), \ LD(r, index.halves.high), LD(r, index.halves.low), \ Sequence(INDEX(), Read(INDEX_ADDR(), temp8_), {MicroOp::Move8, &temp8_, &ri}), \ LD(r, a_) #define READ_OP_GROUP(op) \ Sequence({MicroOp::op, &bc_.halves.high}), Sequence({MicroOp::op, &bc_.halves.low}), \ Sequence({MicroOp::op, &de_.halves.high}), Sequence({MicroOp::op, &de_.halves.low}), \ Sequence({MicroOp::op, &index.halves.high}), Sequence({MicroOp::op, &index.halves.low}), \ Sequence(INDEX(), Read(INDEX_ADDR(), temp8_), {MicroOp::op, &temp8_}), \ Sequence({MicroOp::op, &a_}) #define READ_OP_GROUP_D(op) \ Sequence({MicroOp::op, &bc_.halves.high}), Sequence({MicroOp::op, &bc_.halves.low}), \ Sequence({MicroOp::op, &de_.halves.high}), Sequence({MicroOp::op, &de_.halves.low}), \ Sequence({MicroOp::op, &index.halves.high}), Sequence({MicroOp::op, &index.halves.low}), \ Sequence(INDEX(), Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence({MicroOp::op, &a_}) #define RMW(x, op, ...) Sequence(INDEX(), Read(INDEX_ADDR(), x), InternalOperation(2), {MicroOp::op, &x}, Write(INDEX_ADDR(), x)) #define RMWI(x, op, ...) Sequence(Read(INDEX_ADDR(), x), InternalOperation(2), {MicroOp::op, &x}, Write(INDEX_ADDR(), x)) #define MODIFY_OP_GROUP(op) \ Sequence({MicroOp::op, &bc_.halves.high}), Sequence({MicroOp::op, &bc_.halves.low}), \ Sequence({MicroOp::op, &de_.halves.high}), Sequence({MicroOp::op, &de_.halves.low}), \ Sequence({MicroOp::op, &index.halves.high}), Sequence({MicroOp::op, &index.halves.low}), \ RMW(temp8_, op), \ Sequence({MicroOp::op, &a_}) #define IX_MODIFY_OP_GROUP(op) \ RMWI(bc_.halves.high, op), \ RMWI(bc_.halves.low, op), \ RMWI(de_.halves.high, op), \ RMWI(de_.halves.low, op), \ RMWI(hl_.halves.high, op), \ RMWI(hl_.halves.low, op), \ RMWI(temp8_, op), \ RMWI(a_, op) #define IX_READ_OP_GROUP(op) \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}), \ Sequence(Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::op, &temp8_}) #define ADD16(d, s) Sequence(InternalOperation(8), InternalOperation(6), {MicroOp::ADD16, &s.full, &d.full}) #define ADC16(d, s) Sequence(InternalOperation(8), InternalOperation(6), {MicroOp::ADC16, &s.full, &d.full}) #define SBC16(d, s) Sequence(InternalOperation(8), InternalOperation(6), {MicroOp::SBC16, &s.full, &d.full}) void ProcessorStorage::install_default_instruction_set() { MicroOp conditional_call_untaken_program[] = Sequence(ReadInc(pc_, memptr_.halves.high)); copy_program(conditional_call_untaken_program, conditional_call_untaken_program_); assemble_base_page(base_page_, hl_, false, cb_page_); assemble_base_page(dd_page_, ix_, true, ddcb_page_); assemble_base_page(fd_page_, iy_, true, fdcb_page_); assemble_ed_page(ed_page_); fd_page_.is_indexed = true; fdcb_page_.is_indexed = true; dd_page_.is_indexed = true; ddcb_page_.is_indexed = true; assemble_fetch_decode_execute(base_page_, 4); assemble_fetch_decode_execute(dd_page_, 4); assemble_fetch_decode_execute(fd_page_, 4); assemble_fetch_decode_execute(ed_page_, 4); assemble_fetch_decode_execute(cb_page_, 4); assemble_fetch_decode_execute(fdcb_page_, 3); assemble_fetch_decode_execute(ddcb_page_, 3); MicroOp reset_program[] = Sequence(InternalOperation(6), {MicroOp::Reset}); // Justification for NMI timing: per Wilf Rigter on the ZX81 (http://www.user.dccnet.com/wrigter/index_files/ZX81WAIT.htm), // wait cycles occur between T2 and T3 during NMI; extending the refresh cycle is also consistent with my guess // for the action of other non-four-cycle opcode fetches MicroOp nmi_program[] = { { MicroOp::BeginNMI }, BusOp(ReadOpcodeStart()), BusOp(ReadOpcodeWait(true)), BusOp(ReadOpcodeEnd()), BusOp(Refresh()), InternalOperation(2), Push(pc_), { MicroOp::JumpTo66 }, { MicroOp::MoveToNextProgram } }; MicroOp irq_mode0_program[] = { { MicroOp::BeginIRQMode0 }, BusOp(IntAckStart(5, operation_)), BusOp(IntWait(operation_)), BusOp(IntAckEnd(operation_)), { MicroOp::DecodeOperation } }; MicroOp irq_mode1_program[] = { { MicroOp::BeginIRQ }, BusOp(IntAckStart(7, operation_)), // 7 half cycles (including + BusOp(IntWait(operation_)), // [potentially 2 half cycles] + BusOp(IntAckEnd(operation_)), // Implicitly 3 half cycles + BusOp(Refresh()), // 4 half cycles + Push(pc_), // 12 half cycles = 26 half cycles = 13 cycles { MicroOp::Move16, &temp16_.full, &pc_.full }, { MicroOp::MoveToNextProgram } }; MicroOp irq_mode2_program[] = { { MicroOp::BeginIRQ }, BusOp(IntAckStart(7, temp16_.halves.low)), BusOp(IntWait(temp16_.halves.low)), BusOp(IntAckEnd(temp16_.halves.low)), BusOp(Refresh()), Push(pc_), { MicroOp::Move8, &ir_.halves.high, &temp16_.halves.high }, Read16(temp16_, pc_), { MicroOp::MoveToNextProgram } }; copy_program(reset_program, reset_program_); copy_program(nmi_program, nmi_program_); copy_program(irq_mode0_program, irq_program_[0]); copy_program(irq_mode1_program, irq_program_[1]); copy_program(irq_mode2_program, irq_program_[2]); } void ProcessorStorage::assemble_ed_page(InstructionPage &target) { #define IN_C(r) Sequence({MicroOp::Move16, &bc_.full, &memptr_.full}, Input(bc_, r), {MicroOp::SetInFlags, &r}) #define OUT_C(r) Sequence(Output(bc_, r), {MicroOp::SetOutFlags}) #define IN_OUT(r) IN_C(r), OUT_C(r) #define NOP_ROW() NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP InstructionTable ed_program_table = { NOP_ROW(), /* 0x00 */ NOP_ROW(), /* 0x10 */ NOP_ROW(), /* 0x20 */ NOP_ROW(), /* 0x30 */ /* 0x40 IN B, (C); 0x41 OUT (C), B */ IN_OUT(bc_.halves.high), /* 0x42 SBC HL, BC */ SBC16(hl_, bc_), /* 0x43 LD (nn), BC */ Sequence(Read16Inc(pc_, memptr_), Write16(memptr_, bc_)), /* 0x44 NEG */ Sequence({MicroOp::NEG}), /* 0x45 RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x46 IM 0 */ Sequence({MicroOp::IM}), /* 0x47 LD I, A */ Sequence(InternalOperation(2), {MicroOp::Move8, &a_, &ir_.halves.high}), /* 0x48 IN C, (C); 0x49 OUT (C), C */ IN_OUT(bc_.halves.low), /* 0x4a ADC HL, BC */ ADC16(hl_, bc_), /* 0x4b LD BC, (nn) */ Sequence(Read16Inc(pc_, memptr_), Read16(memptr_, bc_)), /* 0x4c NEG */ Sequence({MicroOp::NEG}), /* 0x4d RETI */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x4e IM 0/1 */ Sequence({MicroOp::IM}), /* 0x4f LD R, A */ Sequence(InternalOperation(2), {MicroOp::Move8, &a_, &ir_.halves.low}), /* 0x50 IN D, (C); 0x51 OUT (C), D */ IN_OUT(de_.halves.high), /* 0x52 SBC HL, DE */ SBC16(hl_, de_), /* 0x53 LD (nn), DE */ Sequence(Read16Inc(pc_, memptr_), Write16(memptr_, de_)), /* 0x54 NEG */ Sequence({MicroOp::NEG}), /* 0x55 RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x56 IM 1 */ Sequence({MicroOp::IM}), /* 0x57 LD A, I */ Sequence(InternalOperation(2), {MicroOp::Move8, &ir_.halves.high, &a_}, {MicroOp::SetAFlags}), /* 0x58 IN E, (C); 0x59 OUT (C), E */ IN_OUT(de_.halves.low), /* 0x5a ADC HL, DE */ ADC16(hl_, de_), /* 0x5b LD DE, (nn) */ Sequence(Read16Inc(pc_, memptr_), Read16(memptr_, de_)), /* 0x5c NEG */ Sequence({MicroOp::NEG}), /* 0x5d RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x5e IM 2 */ Sequence({MicroOp::IM}), /* 0x5f LD A, R */ Sequence(InternalOperation(2), {MicroOp::Move8, &ir_.halves.low, &a_}, {MicroOp::SetAFlags}), /* 0x60 IN H, (C); 0x61 OUT (C), H */ IN_OUT(hl_.halves.high), /* 0x62 SBC HL, HL */ SBC16(hl_, hl_), /* 0x63 LD (nn), HL */ Sequence(Read16Inc(pc_, memptr_), Write16(memptr_, hl_)), /* 0x64 NEG */ Sequence({MicroOp::NEG}), /* 0x65 RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x66 IM 0 */ Sequence({MicroOp::IM}), /* 0x67 RRD */ Sequence(Read(hl_, temp8_), InternalOperation(8), {MicroOp::RRD}, Write(hl_, temp8_)), /* 0x68 IN L, (C); 0x69 OUT (C), L */ IN_OUT(hl_.halves.low), /* 0x6a ADC HL, HL */ ADC16(hl_, hl_), /* 0x6b LD HL, (nn) */ Sequence(Read16Inc(pc_, memptr_), Read16(memptr_, hl_)), /* 0x6c NEG */ Sequence({MicroOp::NEG}), /* 0x6d RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x6e IM 0/1 */ Sequence({MicroOp::IM}), /* 0x6f RLD */ Sequence(Read(hl_, temp8_), InternalOperation(8), {MicroOp::RLD}, Write(hl_, temp8_)), /* 0x70 IN (C) */ IN_C(temp8_), /* 0x71 OUT (C), 0 */ Sequence({MicroOp::SetZero}, Output(bc_, temp8_), {MicroOp::SetOutFlags}), /* 0x72 SBC HL, SP */ SBC16(hl_, sp_), /* 0x73 LD (nn), SP */ Sequence(Read16Inc(pc_, memptr_), Write16(memptr_, sp_)), /* 0x74 NEG */ Sequence({MicroOp::NEG}), /* 0x75 RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x76 IM 1 */ Sequence({MicroOp::IM}), /* 0x77 XX */ NOP, /* 0x78 IN A, (C); 0x79 OUT (C), A */ IN_OUT(a_), /* 0x7a ADC HL, SP */ ADC16(hl_, sp_), /* 0x7b LD SP, (nn) */ Sequence(Read16Inc(pc_, memptr_), Read16(memptr_, sp_)), /* 0x7c NEG */ Sequence({MicroOp::NEG}), /* 0x7d RETN */ Sequence(Pop(pc_), {MicroOp::RETN}), /* 0x7e IM 2 */ Sequence({MicroOp::IM}), /* 0x7f XX */ NOP, NOP_ROW(), /* 0x80 ... 0x8f */ NOP_ROW(), /* 0x90 ... 0x9f */ /* 0xa0 LDI */ Sequence(Read(hl_, temp8_), Write(de_, temp8_), InternalOperation(4), {MicroOp::LDI}), /* 0xa1 CPI */ Sequence(Read(hl_, temp8_), InternalOperation(10), {MicroOp::CPI}), /* 0xa2 INI */ Sequence(InternalOperation(2), Input(bc_, temp8_), Write(hl_, temp8_), {MicroOp::INI}), /* 0xa3 OTI */ Sequence(InternalOperation(2), Read(hl_, temp8_), {MicroOp::OUTI}, Output(bc_, temp8_)), NOP, NOP, NOP, NOP, /* 0xa8 LDD */ Sequence(Read(hl_, temp8_), Write(de_, temp8_), InternalOperation(4), {MicroOp::LDD}), /* 0xa9 CPD */ Sequence(Read(hl_, temp8_), InternalOperation(10), {MicroOp::CPD}), /* 0xaa IND */ Sequence(InternalOperation(2), Input(bc_, temp8_), Write(hl_, temp8_), {MicroOp::IND}), /* 0xab OTD */ Sequence(InternalOperation(2), Read(hl_, temp8_), {MicroOp::OUTD}, Output(bc_, temp8_)), NOP, NOP, NOP, NOP, /* 0xb0 LDIR */ Sequence(Read(hl_, temp8_), Write(de_, temp8_), InternalOperation(4), {MicroOp::LDIR}, InternalOperation(10)), /* 0xb1 CPIR */ Sequence(Read(hl_, temp8_), InternalOperation(10), {MicroOp::CPIR}, InternalOperation(10)), /* 0xb2 INIR */ Sequence(InternalOperation(2), Input(bc_, temp8_), Write(hl_, temp8_), {MicroOp::INIR}, InternalOperation(10)), /* 0xb3 OTIR */ Sequence(InternalOperation(2), Read(hl_, temp8_), {MicroOp::OUTI}, Output(bc_, temp8_), {MicroOp::OUT_R}, InternalOperation(10)), NOP, NOP, NOP, NOP, /* 0xb8 LDDR */ Sequence(Read(hl_, temp8_), Write(de_, temp8_), InternalOperation(4), {MicroOp::LDDR}, InternalOperation(10)), /* 0xb9 CPDR */ Sequence(Read(hl_, temp8_), InternalOperation(10), {MicroOp::CPDR}, InternalOperation(10)), /* 0xba INDR */ Sequence(InternalOperation(2), Input(bc_, temp8_), Write(hl_, temp8_), {MicroOp::INDR}, InternalOperation(10)), /* 0xbb OTDR */ Sequence(InternalOperation(2), Read(hl_, temp8_), {MicroOp::OUTD}, Output(bc_, temp8_), {MicroOp::OUT_R}, InternalOperation(10)), NOP, NOP, NOP, NOP, NOP_ROW(), /* 0xc0 */ NOP_ROW(), /* 0xd0 */ NOP_ROW(), /* 0xe0 */ NOP_ROW(), /* 0xf0 */ }; assemble_page(target, ed_program_table, false); #undef NOP_ROW } void ProcessorStorage::assemble_cb_page(InstructionPage &target, RegisterPair16 &index, bool add_offsets) { #define OCTO_OP_GROUP(m, x) m(x), m(x), m(x), m(x), m(x), m(x), m(x), m(x) #define CB_PAGE(m, p) m(RLC), m(RRC), m(RL), m(RR), m(SLA), m(SRA), m(SLL), m(SRL), OCTO_OP_GROUP(p, BIT), OCTO_OP_GROUP(m, RES), OCTO_OP_GROUP(m, SET) InstructionTable cb_program_table = { /* 0x00 RLC B; 0x01 RLC C; 0x02 RLC D; 0x03 RLC E; 0x04 RLC H; 0x05 RLC L; 0x06 RLC (HL); 0x07 RLC A */ /* 0x08 RRC B; 0x09 RRC C; 0x0a RRC D; 0x0b RRC E; 0x0c RRC H; 0x0d RRC L; 0x0e RRC (HL); 0x0f RRC A */ /* 0x10 RL B; 0x11 RL C; 0x12 RL D; 0x13 RL E; 0x14 RL H; 0x15 RL L; 0x16 RL (HL); 0x17 RL A */ /* 0x18 RR B; 0x99 RR C; 0x1a RR D; 0x1b RR E; 0x1c RR H; 0x1d RR L; 0x1e RR (HL); 0x1f RR A */ /* 0x20 SLA B; 0x21 SLA C; 0x22 SLA D; 0x23 SLA E; 0x24 SLA H; 0x25 SLA L; 0x26 SLA (HL); 0x27 SLA A */ /* 0x28 SRA B; 0x29 SRA C; 0x2a SRA D; 0x2b SRA E; 0x2c SRA H; 0x2d SRA L; 0x2e SRA (HL); 0x2f SRA A */ /* 0x30 SLL B; 0x31 SLL C; 0x32 SLL D; 0x33 SLL E; 0x34 SLL H; 0x35 SLL L; 0x36 SLL (HL); 0x37 SLL A */ /* 0x38 SRL B; 0x39 SRL C; 0x3a SRL D; 0x3b SRL E; 0x3c SRL H; 0x3d SRL L; 0x3e SRL (HL); 0x3f SRL A */ /* 0x40 - 0x7f: BIT */ /* 0x80 - 0xcf: RES */ /* 0xd0 - 0xdf: SET */ CB_PAGE(MODIFY_OP_GROUP, READ_OP_GROUP_D) }; InstructionTable offsets_cb_program_table = { CB_PAGE(IX_MODIFY_OP_GROUP, IX_READ_OP_GROUP) }; assemble_page(target, add_offsets ? offsets_cb_program_table : cb_program_table, add_offsets); #undef OCTO_OP_GROUP #undef CB_PAGE } void ProcessorStorage::assemble_base_page(InstructionPage &target, RegisterPair16 &index, bool add_offsets, InstructionPage &cb_page) { #define INC_DEC_LD(r) \ Sequence({MicroOp::Increment8, &r}), \ Sequence({MicroOp::Decrement8, &r}), \ Sequence(ReadInc(pc_, r)) #define INC_INC_DEC_LD(rf, r) \ Sequence(InternalOperation(4), {MicroOp::Increment16, &rf.full}), INC_DEC_LD(r) #define DEC_INC_DEC_LD(rf, r) \ Sequence(InternalOperation(4), {MicroOp::Decrement16, &rf.full}), INC_DEC_LD(r) InstructionTable base_program_table = { /* 0x00 NOP */ NOP, /* 0x01 LD BC, nn */ Sequence(Read16Inc(pc_, bc_)), /* 0x02 LD (BC), A */ Sequence({MicroOp::SetAddrAMemptr, &bc_.full}, Write(bc_, a_)), /* 0x03 INC BC; 0x04 INC B; 0x05 DEC B; 0x06 LD B, n */ INC_INC_DEC_LD(bc_, bc_.halves.high), /* 0x07 RLCA */ Sequence({MicroOp::RLCA}), /* 0x08 EX AF, AF' */ Sequence({MicroOp::ExAFAFDash}), /* 0x09 ADD HL, BC */ ADD16(index, bc_), /* 0x0a LD A, (BC) */ Sequence({MicroOp::Move16, &bc_.full, &memptr_.full}, Read(memptr_, a_), Inc16(memptr_)), /* 0x0b DEC BC; 0x0c INC C; 0x0d DEC C; 0x0e LD C, n */ DEC_INC_DEC_LD(bc_, bc_.halves.low), /* 0x0f RRCA */ Sequence({MicroOp::RRCA}), /* 0x10 DJNZ */ Sequence(InternalOperation(2), ReadInc(pc_, temp8_), {MicroOp::DJNZ}, InternalOperation(10), {MicroOp::CalculateIndexAddress, &pc_.full}, {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0x11 LD DE, nn */ Sequence(Read16Inc(pc_, de_)), /* 0x12 LD (DE), A */ Sequence({MicroOp::SetAddrAMemptr, &de_.full}, Write(de_, a_)), /* 0x13 INC DE; 0x14 INC D; 0x15 DEC D; 0x16 LD D, n */ INC_INC_DEC_LD(de_, de_.halves.high), /* 0x17 RLA */ Sequence({MicroOp::RLA}), /* 0x18 JR */ Sequence(ReadInc(pc_, temp8_), InternalOperation(10), {MicroOp::CalculateIndexAddress, &pc_.full}, {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0x19 ADD HL, DE */ ADD16(index, de_), /* 0x1a LD A, (DE) */ Sequence({MicroOp::Move16, &de_.full, &memptr_.full}, Read(memptr_, a_), Inc16(memptr_)), /* 0x1b DEC DE; 0x1c INC E; 0x1d DEC E; 0x1e LD E, n */ DEC_INC_DEC_LD(de_, de_.halves.low), /* 0x1f RRA */ Sequence({MicroOp::RRA}), /* 0x20 JR NZ */ JR(TestNZ), /* 0x21 LD HL, nn */ Sequence(Read16Inc(pc_, index)), /* 0x22 LD (nn), HL */ Sequence(Read16Inc(pc_, memptr_), Write16(memptr_, index)), /* 0x23 INC HL; 0x24 INC H; 0x25 DEC H; 0x26 LD H, n */ INC_INC_DEC_LD(index, index.halves.high), /* 0x27 DAA */ Sequence({MicroOp::DAA}), /* 0x28 JR Z */ JR(TestZ), /* 0x29 ADD HL, HL */ ADD16(index, index), /* 0x2a LD HL, (nn) */ Sequence(Read16Inc(pc_, memptr_), Read16(memptr_, index)), /* 0x2b DEC HL; 0x2c INC L; 0x2d DEC L; 0x2e LD L, n */ DEC_INC_DEC_LD(index, index.halves.low), /* 0x2f CPL */ Sequence({MicroOp::CPL}), /* 0x30 JR NC */ JR(TestNC), /* 0x31 LD SP, nn */ Sequence(Read16Inc(pc_, sp_)), /* 0x32 LD (nn), A */ Sequence(Read16Inc(pc_, temp16_), {MicroOp::SetAddrAMemptr, &temp16_.full}, Write(temp16_, a_)), /* 0x33 INC SP */ Sequence(InternalOperation(4), {MicroOp::Increment16, &sp_.full}), /* 0x34 INC (HL) */ Sequence(INDEX(), Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::Increment8, &temp8_}, Write(INDEX_ADDR(), temp8_)), /* 0x35 DEC (HL) */ Sequence(INDEX(), Read(INDEX_ADDR(), temp8_), InternalOperation(2), {MicroOp::Decrement8, &temp8_}, Write(INDEX_ADDR(), temp8_)), /* 0x36 LD (HL), n */ Sequence(ReadInc(pc_, temp8_), Write(INDEX_ADDR(), temp8_)), /* 0x37 SCF */ Sequence({MicroOp::SCF}), /* 0x38 JR C */ JR(TestC), /* 0x39 ADD HL, SP */ ADD16(index, sp_), /* 0x3a LD A, (nn) */ Sequence(Read16Inc(pc_, memptr_), Read(memptr_, a_), Inc16(memptr_)), /* 0x3b DEC SP */ Sequence(InternalOperation(4), {MicroOp::Decrement16, &sp_.full}), /* 0x3c INC A; 0x3d DEC A; 0x3e LD A, n */ INC_DEC_LD(a_), /* 0x3f CCF */ Sequence({MicroOp::CCF}), /* 0x40 LD B, B; 0x41 LD B, C; 0x42 LD B, D; 0x43 LD B, E; 0x44 LD B, H; 0x45 LD B, L; 0x46 LD B, (HL); 0x47 LD B, A */ LD_GROUP(bc_.halves.high, bc_.halves.high), /* 0x48 LD C, B; 0x49 LD C, C; 0x4a LD C, D; 0x4b LD C, E; 0x4c LD C, H; 0x4d LD C, L; 0x4e LD C, (HL); 0x4f LD C, A */ LD_GROUP(bc_.halves.low, bc_.halves.low), /* 0x50 LD D, B; 0x51 LD D, C; 0x52 LD D, D; 0x53 LD D, E; 0x54 LD D, H; 0x55 LD D, L; 0x56 LD D, (HL); 0x57 LD D, A */ LD_GROUP(de_.halves.high, de_.halves.high), /* 0x58 LD E, B; 0x59 LD E, C; 0x5a LD E, D; 0x5b LD E, E; 0x5c LD E, H; 0x5d LD E, L; 0x5e LD E, (HL); 0x5f LD E, A */ LD_GROUP(de_.halves.low, de_.halves.low), /* 0x60 LD H, B; 0x61 LD H, C; 0x62 LD H, D; 0x63 LD H, E; 0x64 LD H, H; 0x65 LD H, L; 0x66 LD H, (HL); 0x67 LD H, A */ LD_GROUP(index.halves.high, hl_.halves.high), /* 0x68 LD L, B; 0x69 LD L, C; 0x6a LD L, D; 0x6b LD L, E; 0x6c LD L, H; 0x6d LD H, L; 0x6e LD L, (HL); 0x6f LD L, A */ LD_GROUP(index.halves.low, hl_.halves.low), /* 0x70 LD (HL), B */ Sequence(INDEX(), Write(INDEX_ADDR(), bc_.halves.high)), /* 0x71 LD (HL), C */ Sequence(INDEX(), Write(INDEX_ADDR(), bc_.halves.low)), /* 0x72 LD (HL), D */ Sequence(INDEX(), Write(INDEX_ADDR(), de_.halves.high)), /* 0x73 LD (HL), E */ Sequence(INDEX(), Write(INDEX_ADDR(), de_.halves.low)), /* 0x74 LD (HL), H */ Sequence(INDEX(), Write(INDEX_ADDR(), hl_.halves.high)), // neither of these stores parts of the index register; /* 0x75 LD (HL), L */ Sequence(INDEX(), Write(INDEX_ADDR(), hl_.halves.low)), // they always store exactly H and L. /* 0x76 HALT */ Sequence({MicroOp::HALT}), /* 0x77 LD (HL), A */ Sequence(INDEX(), Write(INDEX_ADDR(), a_)), /* 0x78 LD A, B; 0x79 LD A, C; 0x7a LD A, D; 0x7b LD A, E; 0x7c LD A, H; 0x7d LD A, L; 0x7e LD A, (HL); 0x7f LD A, A */ LD_GROUP(a_, a_), /* 0x80 ADD B; 0x81 ADD C; 0x82 ADD D; 0x83 ADD E; 0x84 ADD H; 0x85 ADD L; 0x86 ADD (HL); 0x87 ADD A */ READ_OP_GROUP(ADD8), /* 0x88 ADC B; 0x89 ADC C; 0x8a ADC D; 0x8b ADC E; 0x8c ADC H; 0x8d ADC L; 0x8e ADC (HL); 0x8f ADC A */ READ_OP_GROUP(ADC8), /* 0x90 SUB B; 0x91 SUB C; 0x92 SUB D; 0x93 SUB E; 0x94 SUB H; 0x95 SUB L; 0x96 SUB (HL); 0x97 SUB A */ READ_OP_GROUP(SUB8), /* 0x98 SBC B; 0x99 SBC C; 0x9a SBC D; 0x9b SBC E; 0x9c SBC H; 0x9d SBC L; 0x9e SBC (HL); 0x9f SBC A */ READ_OP_GROUP(SBC8), /* 0xa0 AND B; 0xa1 AND C; 0xa2 AND D; 0xa3 AND E; 0xa4 AND H; 0xa5 AND L; 0xa6 AND (HL); 0xa7 AND A */ READ_OP_GROUP(And), /* 0xa8 XOR B; 0xa9 XOR C; 0xaa XOR D; 0xab XOR E; 0xac XOR H; 0xad XOR L; 0xae XOR (HL); 0xaf XOR A */ READ_OP_GROUP(Xor), /* 0xb0 OR B; 0xb1 OR C; 0xb2 OR D; 0xb3 OR E; 0xb4 OR H; 0xb5 OR L; 0xb6 OR (HL); 0xb7 OR A */ READ_OP_GROUP(Or), /* 0xb8 CP B; 0xb9 CP C; 0xba CP D; 0xbb CP E; 0xbc CP H; 0xbd CP L; 0xbe CP (HL); 0xbf CP A */ READ_OP_GROUP(CP8), /* 0xc0 RET NZ */ RET(TestNZ), /* 0xc1 POP BC */ Sequence(Pop(bc_)), /* 0xc2 JP NZ */ JP(TestNZ), /* 0xc3 JP nn */ Sequence(Read16(pc_, memptr_), {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0xc4 CALL NZ */ CALL(TestNZ), /* 0xc5 PUSH BC */ Sequence(InternalOperation(2), Push(bc_)), /* 0xc6 ADD A, n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::ADD8, &temp8_}), /* 0xc7 RST 00h */ RST(), /* 0xc8 RET Z */ RET(TestZ), /* 0xc9 RET */ Sequence(Pop(memptr_), {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0xca JP Z */ JP(TestZ), /* 0xcb [CB page] */Sequence(FINDEX(), {MicroOp::SetInstructionPage, &cb_page}), /* 0xcc CALL Z */ CALL(TestZ), /* 0xcd CALL */ Sequence(ReadInc(pc_, memptr_.halves.low), ReadInc(pc_, memptr_.halves.high), InternalOperation(2), Push(pc_), {MicroOp::Move16, &memptr_.full, &pc_.full}), /* 0xce ADC A, n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::ADC8, &temp8_}), /* 0xcf RST 08h */ RST(), /* 0xd0 RET NC */ RET(TestNC), /* 0xd1 POP DE */ Sequence(Pop(de_)), /* 0xd2 JP NC */ JP(TestNC), /* 0xd3 OUT (n), A */Sequence(ReadInc(pc_, memptr_.halves.low), {MicroOp::Move8, &a_, &memptr_.halves.high}, Output(memptr_, a_), Inc8NoFlags(memptr_.halves.low)), /* 0xd4 CALL NC */ CALL(TestNC), /* 0xd5 PUSH DE */ Sequence(InternalOperation(2), Push(de_)), /* 0xd6 SUB n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::SUB8, &temp8_}), /* 0xd7 RST 10h */ RST(), /* 0xd8 RET C */ RET(TestC), /* 0xd9 EXX */ Sequence({MicroOp::EXX}), /* 0xda JP C */ JP(TestC), /* 0xdb IN A, (n) */Sequence(ReadInc(pc_, memptr_.halves.low), {MicroOp::Move8, &a_, &memptr_.halves.high}, Input(memptr_, a_), Inc16(memptr_)), /* 0xdc CALL C */ CALL(TestC), /* 0xdd [DD page] */Sequence({MicroOp::SetInstructionPage, &dd_page_}), /* 0xde SBC A, n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::SBC8, &temp8_}), /* 0xdf RST 18h */ RST(), /* 0xe0 RET PO */ RET(TestPO), /* 0xe1 POP HL */ Sequence(Pop(index)), /* 0xe2 JP PO */ JP(TestPO), /* 0xe3 EX (SP), HL */Sequence(Pop(memptr_), InternalOperation(2), Push(index), InternalOperation(4), {MicroOp::Move16, &memptr_.full, &index.full}), /* 0xe4 CALL PO */ CALL(TestPO), /* 0xe5 PUSH HL */ Sequence(InternalOperation(2), Push(index)), /* 0xe6 AND n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::And, &temp8_}), /* 0xe7 RST 20h */ RST(), /* 0xe8 RET PE */ RET(TestPE), /* 0xe9 JP (HL) */ Sequence({MicroOp::Move16, &index.full, &pc_.full}), /* 0xea JP PE */ JP(TestPE), /* 0xeb EX DE, HL */Sequence({MicroOp::ExDEHL}), /* 0xec CALL PE */ CALL(TestPE), /* 0xed [ED page] */Sequence({MicroOp::SetInstructionPage, &ed_page_}), /* 0xee XOR n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::Xor, &temp8_}), /* 0xef RST 28h */ RST(), /* 0xf0 RET p */ RET(TestP), /* 0xf1 POP AF */ Sequence(Pop(temp16_), {MicroOp::DisassembleAF}), /* 0xf2 JP P */ JP(TestP), /* 0xf3 DI */ Sequence({MicroOp::DI}), /* 0xf4 CALL P */ CALL(TestP), /* 0xf5 PUSH AF */ Sequence(InternalOperation(2), {MicroOp::AssembleAF}, Push(temp16_)), /* 0xf6 OR n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::Or, &temp8_}), /* 0xf7 RST 30h */ RST(), /* 0xf8 RET M */ RET(TestM), /* 0xf9 LD SP, HL */Sequence(InternalOperation(4), {MicroOp::Move16, &index.full, &sp_.full}), /* 0xfa JP M */ JP(TestM), /* 0xfb EI */ Sequence({MicroOp::EI}), /* 0xfc CALL M */ CALL(TestM), /* 0xfd [FD page] */Sequence({MicroOp::SetInstructionPage, &fd_page_}), /* 0xfe CP n */ Sequence(ReadInc(pc_, temp8_), {MicroOp::CP8, &temp8_}), /* 0xff RST 38h */ RST(), }; if(add_offsets) { // The indexed version of 0x36 differs substantially from the non-indexed by building index calculation into // the cycle that fetches the final operand. So patch in a different microprogram if building an indexed table. InstructionTable copy_table = { Sequence(FINDEX(), ReadInc(pc_, temp8_), InternalOperation(4), Write(INDEX_ADDR(), temp8_)) }; std::memcpy(&base_program_table[0x36], ©_table[0], sizeof(copy_table[0])); } assemble_cb_page(cb_page, index, add_offsets); assemble_page(target, base_program_table, add_offsets); } void ProcessorStorage::assemble_fetch_decode_execute(InstructionPage &target, int length) { /// The fetch-decode-execute sequence for a regular four-clock M1 cycle. const MicroOp normal_fetch_decode_execute[] = { BusOp(ReadOpcodeStart()), BusOp(ReadOpcodeWait(true)), BusOp(ReadOpcodeEnd()), { MicroOp::IncrementR }, BusOp(Refresh()), { MicroOp::DecodeOperation } }; /// The concluding fetch-decode-execute of a [dd/fd]cb nn oo sequence, i.e. an (IX+n) or (IY+n) operation. /// Per the observed 48kb/128kb Spectrum timings, this appears not to include a refresh cycle. So I've also /// taken a punt on it not incrementing R. const MicroOp short_fetch_decode_execute[] = { BusOp(ReadStart(pc_, operation_)), BusOp(ReadWait(pc_, operation_)), BusOp(ReadEnd(pc_, operation_)), InternalOperation(4), { MicroOp::DecodeOperation }, }; copy_program((length == 4) ? normal_fetch_decode_execute : short_fetch_decode_execute, target.fetch_decode_execute); target.fetch_decode_execute_data = target.fetch_decode_execute.data(); } bool ProcessorBase::is_starting_new_instruction() const { return current_instruction_page_ == &base_page_ && scheduled_program_counter_ == &base_page_.fetch_decode_execute[0]; } bool ProcessorBase::get_is_resetting() const { return request_status_ & (Interrupt::PowerOn | Interrupt::Reset); }