// // 65816Implementation.hpp // Clock Signal // // Created by Thomas Harte on 27/09/2020. // Copyright © 2020 Thomas Harte. All rights reserved. // template void Processor::run_for(const Cycles cycles) { #define perform_bus(address, value, operation) \ bus_address_ = address; \ bus_value_ = value; \ bus_operation_ = operation #define read(address, value) perform_bus(address, value, MOS6502Esque::Read) #define write(address, value) perform_bus(address, value, MOS6502Esque::Write) #define m_flag() registers_.mx_flags[0] #define x_flag() registers_.mx_flags[1] #define x() (registers_.x.full & registers_.x_masks[1]) #define y() (registers_.y.full & registers_.x_masks[1]) #define stack_address() ((registers_.s.full & registers_.e_masks[1]) | (0x0100 & registers_.e_masks[0])) Cycles number_of_cycles = cycles + cycles_left_to_run_; while(number_of_cycles > Cycles(0)) { const MicroOp operation = *next_op_; ++next_op_; #ifndef NDEBUG // As a sanity check. bus_value_ = nullptr; #endif switch(operation) { // // Scheduling. // case OperationMoveToNextProgram: { // The exception program will determine the appropriate way to respond // based on the pending exception if one exists; otherwise just do a // standard fetch-decode-execute. const auto offset = instructions[selected_exceptions_ ? size_t(OperationSlot::Exception) : size_t(OperationSlot::FetchDecodeExecute)].program_offsets[0]; next_op_ = µ_ops_[offset]; instruction_buffer_.clear(); data_buffer_.clear(); last_operation_pc_ = registers_.pc; } continue; case OperationDecode: { active_instruction_ = &instructions[instruction_buffer_.value]; const auto size_flag = registers_.mx_flags[active_instruction_->size_field]; next_op_ = µ_ops_[active_instruction_->program_offsets[size_flag]]; instruction_buffer_.clear(); } continue; // // PC fetches. // case CycleFetchIncrementPC: read(registers_.pc | registers_.program_bank, instruction_buffer_.next_input()); ++registers_.pc; break; case CycleFetchOpcode: perform_bus(registers_.pc | registers_.program_bank, instruction_buffer_.next_input(), MOS6502Esque::ReadOpcode); ++registers_.pc; break; case CycleFetchPC: read(registers_.pc | registers_.program_bank, instruction_buffer_.next_input()); break; case CycleFetchPCThrowaway: read(registers_.pc | registers_.program_bank, &bus_throwaway_); break; // // Data fetches and stores. // #define increment_data_address() data_address_ = (data_address_ & ~data_address_increment_mask_) + ((data_address_ + 1) & data_address_increment_mask_) #define decrement_data_address() data_address_ = (data_address_ & ~data_address_increment_mask_) + ((data_address_ - 1) & data_address_increment_mask_) case CycleFetchData: read(data_address_, data_buffer_.next_input()); break; case CycleFetchDataThrowaway: read(data_address_, &bus_throwaway_); break; case CycleFetchIncorrectDataAddress: read(incorrect_data_address_, &bus_throwaway_); break; case CycleFetchIncrementData: read(data_address_, data_buffer_.next_input()); increment_data_address(); break; case CycleStoreData: write(data_address_, data_buffer_.next_output()); break; case CycleStoreDataThrowaway: write(data_address_, data_buffer_.preview_output()); break; case CycleStoreIncrementData: write(data_address_, data_buffer_.next_output()); increment_data_address(); break; case CycleStoreDecrementData: write(data_address_, data_buffer_.next_output_descending()); decrement_data_address(); break; case CycleFetchBlockX: read(((instruction_buffer_.value & 0xff00) << 8) | x(), data_buffer_.any_byte()); break; case CycleFetchBlockY: read(((instruction_buffer_.value & 0xff00) << 8) | y(), &bus_throwaway_); break; case CycleStoreBlockY: write(((instruction_buffer_.value & 0xff00) << 8) | x(), data_buffer_.any_byte()); break; #undef increment_data_address #undef decrement_data_address // // Stack accesses. // #define stack_access(value, operation) \ bus_address_ = stack_address(); \ bus_value_ = value; \ bus_operation_ = operation; case CyclePush: stack_access(data_buffer_.next_output_descending(), MOS6502Esque::Write); --registers_.s.full; break; case CyclePullIfNotEmulation: if(registers_.emulation_flag) { continue; } [[fallthrough]]; case CyclePull: ++registers_.s.full; stack_access(data_buffer_.next_input(), MOS6502Esque::Read); break; case CycleAccessStack: stack_access(&bus_throwaway_, MOS6502Esque::Read); break; #undef stack_access // // STP and WAI. // case CycleRepeatingNone: if(pending_exceptions_ & required_exceptions_) { continue; } else { --next_op_; perform_bus(0xffffff, nullptr, MOS6502Esque::None); } break; // // Data movement. // case OperationCopyPCToData: data_buffer_.size = 2; data_buffer_.value = registers_.pc; continue; case OperationCopyInstructionToData: data_buffer_ = instruction_buffer_; continue; case OperationCopyDataToInstruction: instruction_buffer_ = data_buffer_; data_buffer_.clear(); continue; case OperationCopyAToData: data_buffer_.value = registers_.a.full & registers_.m_masks[1]; data_buffer_.size = 2 - m_flag(); continue; case OperationCopyDataToA: registers_.a.full = (registers_.a.full & registers_.m_masks[0]) + (data_buffer_.value & registers_.m_masks[1]); continue; case OperationCopyPBRToData: data_buffer_.size = 1; data_buffer_.value = registers_.program_bank >> 16; continue; case OperationCopyDataToPC: registers_.pc = uint16_t(data_buffer_.value); continue; // // Address construction. // case OperationConstructAbsolute: data_address_ = instruction_buffer_.value + registers_.data_bank; data_address_increment_mask_ = 0xff'ff'ff; continue; case OperationConstructAbsolute16: data_address_ = instruction_buffer_.value; data_address_increment_mask_ = 0x00'ff'ff; continue; case OperationConstructAbsoluteLong: data_address_ = instruction_buffer_.value; data_address_increment_mask_ = 0xff'ff'ff; continue; // Used for JMP and JSR (absolute, x). case OperationConstructAbsoluteIndexedIndirect: data_address_ = registers_.program_bank + ((instruction_buffer_.value + x()) & 0xffff); data_address_increment_mask_ = 0x00'ff'ff; continue; case OperationConstructAbsoluteLongX: data_address_ = instruction_buffer_.value + x(); data_address_increment_mask_ = 0xff'ff'ff; continue; case OperationConstructAbsoluteXRead: case OperationConstructAbsoluteX: data_address_ = instruction_buffer_.value + x() + registers_.data_bank; incorrect_data_address_ = (data_address_ & 0xff) | (instruction_buffer_.value & 0xff00) + registers_.data_bank; // If the incorrect address isn't actually incorrect, skip its usage. if(operation == OperationConstructAbsoluteXRead && data_address_ == incorrect_data_address_) { ++next_op_; } data_address_increment_mask_ = 0xff'ff'ff; continue; case OperationConstructAbsoluteYRead: case OperationConstructAbsoluteY: data_address_ = instruction_buffer_.value + y() + registers_.data_bank; incorrect_data_address_ = (data_address_ & 0xff) + (instruction_buffer_.value & 0xff00) + registers_.data_bank; // If the incorrect address isn't actually incorrect, skip its usage. if(operation == OperationConstructAbsoluteYRead && data_address_ == incorrect_data_address_) { ++next_op_; } data_address_increment_mask_ = 0xff'ff'ff; continue; case OperationConstructDirect: data_address_ = (registers_.direct + instruction_buffer_.value) & 0xffff; data_address_increment_mask_ = 0x00'ff'ff; if(!(registers_.direct&0xff)) { // If the low byte is 0 and this is emulation mode, incrementing // is restricted to the low byte. data_address_increment_mask_ = registers_.e_masks[1]; ++next_op_; } continue; case OperationConstructDirectLong: data_address_ = (registers_.direct + instruction_buffer_.value) & 0xffff; data_address_increment_mask_ = 0x00'ff'ff; if(!(registers_.direct&0xff)) { ++next_op_; } continue; case OperationConstructDirectIndirect: data_address_ = registers_.data_bank + data_buffer_.value; data_address_increment_mask_ = 0xff'ff'ff; data_buffer_.clear(); continue; case OperationConstructDirectIndexedIndirect: data_address_ = registers_.data_bank + ( ((registers_.direct + x() + instruction_buffer_.value) & registers_.e_masks[1]) + (registers_.direct & registers_.e_masks[0]) ) & 0xffff; data_address_increment_mask_ = 0x00'ff'ff; if(!(registers_.direct&0xff)) { ++next_op_; } continue; case OperationConstructDirectIndirectIndexedLong: data_address_ = y() + data_buffer_.value; data_address_increment_mask_ = 0xff'ff'ff; data_buffer_.clear(); continue; case OperationConstructDirectIndirectLong: data_address_ = data_buffer_.value; data_address_increment_mask_ = 0xff'ff'ff; data_buffer_.clear(); continue; // TODO: confirm incorrect_data_address_ below. case OperationConstructDirectX: data_address_ = ( (registers_.direct & registers_.e_masks[0]) + ((instruction_buffer_.value + registers_.direct + x()) & registers_.e_masks[1]) ) & 0xffff; data_address_increment_mask_ = 0x00'ff'ff; incorrect_data_address_ = (registers_.direct & 0xff00) + (data_address_ & 0x00ff); if(!(registers_.direct&0xff)) { ++next_op_; } continue; case OperationConstructDirectY: data_address_ = ( (registers_.direct & registers_.e_masks[0]) + ((instruction_buffer_.value + registers_.direct + y()) & registers_.e_masks[1]) ) & 0xffff; data_address_increment_mask_ = 0x00'ff'ff; incorrect_data_address_ = (registers_.direct & 0xff00) + (data_address_ & 0x00ff); if(!(registers_.direct&0xff)) { ++next_op_; } continue; case OperationConstructStackRelative: data_address_ = (registers_.s.full + instruction_buffer_.value) & 0xffff; data_address_increment_mask_ = 0x00'ff'ff; continue; case OperationConstructStackRelativeIndexedIndirect: data_address_ = registers_.data_bank + data_buffer_.value + y(); data_address_increment_mask_ = 0xff'ff'ff; data_buffer_.clear(); continue; case OperationConstructPER: data_buffer_.value = instruction_buffer_.value + registers_.pc; data_buffer_.size = 2; continue; case OperationPrepareException: { // Put the proper exception vector into the data address, put the flags and PC // into the data buffer (possibly also PBR), and skip an instruction if in // emulation mode. // // I've assumed here that interrupts, BRKs and COPs can be usurped similarly // to a 6502 but may not have the exact details correct. E.g. if IRQ has // become inactive since the decision was made to start an interrupt, should // that turn into a BRK? bool is_brk = false; if(pending_exceptions_ & (Reset | PowerOn)) { pending_exceptions_ &= ~(Reset | PowerOn); data_address_ = 0xfffc; set_reset_state(); } else if(pending_exceptions_ & NMI) { pending_exceptions_ &= ~NMI; data_address_ = 0xfffa; } else if(pending_exceptions_ & IRQ & registers_.flags.inverse_interrupt) { pending_exceptions_ &= ~IRQ; data_address_ = 0xfffe; } else { is_brk = active_instruction_ == instructions; // Given that BRK has opcode 00. if(is_brk) { data_address_ = registers_.emulation_flag ? 0xfffe : 0xfff6; } else { // Implicitly: COP. data_address_ = 0xfff4; } } data_buffer_.value = (registers_.pc << 8) | get_flags(); if(registers_.emulation_flag) { if(is_brk) data_buffer_.value |= Flag::Break; data_buffer_.size = 3; ++next_op_; } else { data_buffer_.value |= registers_.program_bank << 24; data_buffer_.size = 4; registers_.program_bank = 0; } registers_.flags.inverse_interrupt = 0; } continue; // // Performance. // #define LD(dest, src, masks) dest.full = (dest.full & masks[0]) | (src & masks[1]) #define m_top() (instruction_buffer_.value >> registers_.m_shift) & 0xff #define x_top() (registers_.x.full >> registers_.x_shift) & 0xff #define y_top() (registers_.y.full >> registers_.x_shift) & 0xff #define a_top() (registers_.a.full >> registers_.m_shift) & 0xff case OperationPerform: switch(active_instruction_->operation) { // // Loads, stores and transfers (and NOP, and XBA). // case LDA: LD(registers_.a, data_buffer_.value, registers_.m_masks); registers_.flags.set_nz(registers_.a.full, registers_.m_shift); break; case LDX: LD(registers_.x, data_buffer_.value, registers_.x_masks); registers_.flags.set_nz(registers_.x.full, registers_.x_shift); break; case LDY: LD(registers_.y, data_buffer_.value, registers_.x_masks); registers_.flags.set_nz(registers_.y.full, registers_.x_shift); break; case PLB: registers_.data_bank = (data_buffer_.value & 0xff) << 16; registers_.flags.set_nz(instruction_buffer_.value); break; case PLD: registers_.direct = data_buffer_.value; registers_.flags.set_nz(instruction_buffer_.value); break; case PLP: set_flags(data_buffer_.value); break; case STA: data_buffer_.value = registers_.a.full & registers_.m_masks[1]; data_buffer_.size = 2 - m_flag(); break; case STZ: data_buffer_.value = 0; data_buffer_.size = 2 - m_flag(); break; case STX: data_buffer_.value = registers_.x.full & registers_.x_masks[1]; data_buffer_.size = 2 - x_flag(); break; case STY: data_buffer_.value = registers_.y.full & registers_.x_masks[1]; data_buffer_.size = 2 - m_flag(); break; case PHB: data_buffer_.value = registers_.data_bank >> 16; data_buffer_.size = 1; break; case PHK: data_buffer_.value = registers_.program_bank >> 16; data_buffer_.size = 1; break; case PHD: data_buffer_.value = registers_.direct; data_buffer_.size = 2; break; case PHP: data_buffer_.value = get_flags(); data_buffer_.size = 1; if(registers_.emulation_flag) { // On the 6502, the break flag is set during a PHP. data_buffer_.value |= Flag::Break; } break; case NOP: break; // The below attempt to obey the 8/16-bit mixed transfer rules // as documented in https://softpixel.com/~cwright/sianse/docs/65816NFO.HTM // (and make reasonable guesses as to the N flag). case TXS: registers_.s = registers_.x.full & registers_.x_masks[1]; break; case TSX: LD(registers_.x, registers_.s.full, registers_.x_masks); registers_.flags.set_nz(registers_.x.full, registers_.x_shift); break; case TXY: LD(registers_.y, registers_.x.full, registers_.x_masks); registers_.flags.set_nz(registers_.y.full, registers_.x_shift); break; case TYX: LD(registers_.x, registers_.y.full, registers_.x_masks); registers_.flags.set_nz(registers_.x.full, registers_.x_shift); break; case TAX: LD(registers_.x, registers_.a.full, registers_.x_masks); registers_.flags.set_nz(registers_.x.full, registers_.x_shift); break; case TAY: LD(registers_.y, registers_.a.full, registers_.x_masks); registers_.flags.set_nz(registers_.y.full, registers_.x_shift); break; case TXA: LD(registers_.a, registers_.x.full, registers_.m_masks); registers_.flags.set_nz(registers_.a.full, registers_.m_shift); break; case TYA: LD(registers_.a, registers_.y.full, registers_.m_masks); registers_.flags.set_nz(registers_.a.full, registers_.m_shift); break; case TCD: registers_.direct = registers_.a.full; registers_.flags.set_nz(registers_.a.full, 8); break; case TDC: registers_.a.full = registers_.direct; registers_.flags.set_nz(registers_.a.full, 8); break; case TCS: registers_.s.full = registers_.a.full; // No need to worry about byte masking here; for the stack it's handled as the emulation runs. break; case TSC: registers_.a.full = stack_address(); registers_.flags.set_nz(registers_.a.full, 8); break; case XBA: { const uint8_t a_low = registers_.a.halves.low; registers_.a.halves.low = registers_.a.halves.high; registers_.a.halves.high = a_low; registers_.flags.set_nz(registers_.a.halves.low); } break; // // Jumps and returns. // case JML: registers_.program_bank = instruction_buffer_.value & 0xff0000; [[fallthrough]]; case JMP: registers_.pc = uint16_t(instruction_buffer_.value); break; case JMPind: registers_.pc = data_buffer_.value; break; case RTS: registers_.pc = data_buffer_.value + 1; break; case JSL: registers_.program_bank = instruction_buffer_.value & 0xff0000; [[fallthrough]]; case JSR: data_buffer_.value = registers_.pc; data_buffer_.size = 2; registers_.pc = instruction_buffer_.value; break; case RTI: registers_.pc = uint16_t(data_buffer_.value >> 8); set_flags(uint8_t(data_buffer_.value)); if(!registers_.emulation_flag) { registers_.program_bank = (data_buffer_.value & 0xff000000) >> 8; } break; // // Block moves. // case MVP: registers_.data_bank = (instruction_buffer_.value & 0xff) << 16; --registers_.x.full; --registers_.y.full; --registers_.a.full; if(registers_.a.full) registers_.pc -= 3; break; case MVN: registers_.data_bank = (instruction_buffer_.value & 0xff) << 16; ++registers_.x.full; ++registers_.y.full; --registers_.a.full; if(registers_.a.full) registers_.pc -= 3; break; // // Flag manipulation. // case CLC: registers_.flags.carry = 0; break; case CLI: registers_.flags.inverse_interrupt = Flag::Interrupt; break; case CLV: registers_.flags.overflow = 0; break; case CLD: registers_.flags.decimal = 0; break; case SEC: registers_.flags.carry = Flag::Carry; break; case SEI: registers_.flags.inverse_interrupt = 0; break; case SED: registers_.flags.decimal = Flag::Decimal; break; case REP: set_flags(get_flags() &~ instruction_buffer_.value); break; case SEP: set_flags(get_flags() | instruction_buffer_.value); break; case XCE: { const bool old_emulation_flag = registers_.emulation_flag; set_emulation_mode(registers_.flags.carry); registers_.flags.carry = old_emulation_flag; } break; // // Increments and decrements. // case INC: ++data_buffer_.value; registers_.flags.set_nz(data_buffer_.value, registers_.m_shift); break;; case DEC: --data_buffer_.value; registers_.flags.set_nz(data_buffer_.value, registers_.m_shift); break; case INX: { const uint16_t x_inc = registers_.x.full + 1; LD(registers_.x, x_inc, registers_.x_masks); registers_.flags.set_nz(registers_.x.full, registers_.x_shift); } break; case DEX: { const uint16_t x_dec = registers_.x.full - 1; LD(registers_.x, x_dec, registers_.x_masks); registers_.flags.set_nz(registers_.x.full, registers_.x_shift); } break; case INY: { const uint16_t y_inc = registers_.y.full + 1; LD(registers_.y, y_inc, registers_.x_masks); registers_.flags.set_nz(registers_.y.full, registers_.x_shift); } break; case DEY: { const uint16_t y_dec = registers_.y.full - 1; LD(registers_.y, y_dec, registers_.x_masks); registers_.flags.set_nz(registers_.y.full, registers_.x_shift); } break; // // Bitwise operations. // case AND: registers_.a.full &= data_buffer_.value | registers_.m_masks[0]; registers_.flags.set_nz(registers_.a.full, registers_.m_shift); break; case EOR: registers_.a.full ^= data_buffer_.value; registers_.flags.set_nz(registers_.a.full, registers_.m_shift); break; case ORA: registers_.a.full |= data_buffer_.value; registers_.flags.set_nz(registers_.a.full, registers_.m_shift); break; case BIT: registers_.flags.set_n(data_buffer_.value, registers_.m_shift); registers_.flags.set_z(data_buffer_.value & registers_.a.full, registers_.m_shift); registers_.flags.overflow = data_buffer_.value & Flag::Overflow; break; case BITimm: registers_.flags.set_z(data_buffer_.value & registers_.a.full, registers_.m_shift); break; case TRB: registers_.flags.set_z(data_buffer_.value & registers_.a.full, registers_.m_shift); data_buffer_.value &= ~registers_.a.full; break; case TSB: registers_.flags.set_z(data_buffer_.value & registers_.a.full, registers_.m_shift); data_buffer_.value |= registers_.a.full; break; // // Branches. // #define BRA(condition) \ if(!(condition)) { \ next_op_ += 3; \ } else { \ data_buffer_.size = 2; \ data_buffer_.value = registers_.pc + int8_t(instruction_buffer_.value); \ \ if((registers_.pc & 0xff00) == (instruction_buffer_.value & 0xff00)) { \ ++next_op_; \ } \ } case BPL: BRA(!(registers_.flags.negative_result&0x80)); break; case BMI: BRA(registers_.flags.negative_result&0x80); break; case BVC: BRA(!registers_.flags.overflow); break; case BVS: BRA(registers_.flags.overflow); break; case BCC: BRA(!registers_.flags.carry); break; case BCS: BRA(registers_.flags.carry); break; case BNE: BRA(registers_.flags.zero_result); break; case BEQ: BRA(!registers_.flags.zero_result); break; case BRA: BRA(true); break; #undef BRA case BRL: registers_.pc += int16_t(instruction_buffer_.value); break; // // Shifts and rolls. // case ASL: registers_.flags.carry = data_buffer_.value >> (7 + registers_.m_shift); data_buffer_.value <<= 1; registers_.flags.set_nz(data_buffer_.value, registers_.m_shift); break; case LSR: registers_.flags.carry = data_buffer_.value & 1; data_buffer_.value >>= 1; registers_.flags.set_nz(data_buffer_.value, registers_.m_shift); break; case ROL: data_buffer_.value = (data_buffer_.value << 1) | registers_.flags.carry; registers_.flags.carry = data_buffer_.value >> (8 + registers_.m_shift); registers_.flags.set_nz(data_buffer_.value, registers_.m_shift); break; case ROR: { const uint8_t next_carry = data_buffer_.value & 1; data_buffer_.value = (data_buffer_.value >> 1) | (registers_.flags.carry << (7 + registers_.m_shift)); registers_.flags.carry = next_carry; registers_.flags.set_nz(data_buffer_.value, registers_.m_shift); } break; // // Arithmetic. // #define cp(v, shift, masks) {\ const uint32_t temp32 = (v.full & masks[1]) - (data_buffer_.value & masks[1]); \ registers_.flags.set_nz(uint16_t(temp32), shift); \ registers_.flags.carry = ((~temp32) >> (8 + shift))&1; \ } case CMP: cp(registers_.a, registers_.m_shift, registers_.m_masks); break; case CPX: cp(registers_.x, registers_.x_shift, registers_.x_masks); break; case CPY: cp(registers_.y, registers_.x_shift, registers_.x_masks); break; #undef cp case SBC: if(registers_.flags.decimal) { // I've yet to manage to find a rational way to map this to an ADC, // hence the yucky repetition of code here. const uint16_t a = registers_.a.full & registers_.m_masks[1]; unsigned int result = 0; unsigned int borrow = registers_.flags.carry ^ 1; #define nibble(mask, adjustment, carry) \ result += (a & mask) - (data_buffer_.value & mask) - borrow; \ if(result > mask) result -= adjustment;\ borrow = (result > mask) ? carry : 0; \ result &= (carry - 1); nibble(0x000f, 0x0006, 0x00010); nibble(0x00f0, 0x0060, 0x00100); nibble(0x0f00, 0x0600, 0x01000); nibble(0xf000, 0x6000, 0x10000); #undef nibble registers_.flags.overflow = ~(( (result ^ registers_.a.full) & (result ^ data_buffer_.value) ) >> (1 + registers_.m_shift))&0x40; registers_.flags.set_nz(result, registers_.m_shift); registers_.flags.carry = ((borrow >> 16)&1)^1; LD(registers_.a, result, registers_.m_masks); break; } data_buffer_.value = ~data_buffer_.value & registers_.m_masks[1]; [[fallthrough]]; case ADC: { int result; const uint16_t a = registers_.a.full & registers_.m_masks[1]; if(registers_.flags.decimal) { result = registers_.flags.carry; #define nibble(mask, limit, adjustment, carry) \ result += (a & mask) + (data_buffer_.value & mask); \ if(result >= limit) result = ((result + (adjustment)) & (carry - 1)) + carry; nibble(0x000f, 0x000a, 0x0006, 0x00010); nibble(0x00f0, 0x00a0, 0x0060, 0x00100); nibble(0x0f00, 0x0a00, 0x0600, 0x01000); nibble(0xf000, 0xa000, 0x6000, 0x10000); #undef nibble } else { result = a + data_buffer_.value + registers_.flags.carry; } registers_.flags.overflow = (( (result ^ registers_.a.full) & (result ^ data_buffer_.value) ) >> (1 + registers_.m_shift))&0x40; registers_.flags.set_nz(result, registers_.m_shift); registers_.flags.carry = (result >> (8 + registers_.m_shift))&1; LD(registers_.a, result, registers_.m_masks); } break; // // STP and WAI // case STP: required_exceptions_ = Reset; break; case WAI: required_exceptions_ = Reset | IRQ | NMI; break; } continue; } #undef LD #undef m_top #undef x_top #undef y_top #undef a_top // Store a selection as to the exceptions, if any, that would be honoured after this cycle if the // next thing is a MoveToNextProgram. selected_exceptions_ = pending_exceptions_ & (registers_.flags.inverse_interrupt | PowerOn | Reset | NMI); number_of_cycles -= bus_handler_.perform_bus_operation(bus_operation_, bus_address_, bus_value_); // TODO: RDY line. } #undef read #undef write #undef bus_operation #undef x #undef y #undef m_flag #undef x_flag #undef stack_address cycles_left_to_run_ = number_of_cycles; } void ProcessorBase::set_power_on(bool active) { if(active) { pending_exceptions_ |= PowerOn; } else { pending_exceptions_ &= ~PowerOn; } } void ProcessorBase::set_irq_line(bool active) { if(active) { pending_exceptions_ |= IRQ; } else { pending_exceptions_ &= ~IRQ; } } void ProcessorBase::set_reset_line(bool active) { if(active) { pending_exceptions_ |= Reset; } else { pending_exceptions_ &= ~Reset; } } void ProcessorBase::set_nmi_line(bool active) { // This is edge triggered. if(active) { pending_exceptions_ |= NMI; } } // The 65816 can't jam. bool ProcessorBase::is_jammed() const { return false; }