// // ScanTargetVertexArrayAttributs.cpp // Clock Signal // // Created by Thomas Harte on 11/11/2018. // Copyright © 2018 Thomas Harte. All rights reserved. // #include "ScanTarget.hpp" using namespace Outputs::Display::OpenGL; std::string ScanTarget::glsl_globals(ShaderType type) { switch(type) { case ShaderType::Scan: return "#version 150\n" "uniform vec2 scale;" "uniform float rowHeight;" "uniform mat3 lumaChromaToRGB;" "uniform mat3 rgbToLumaChroma;" "uniform float processingWidth;" "in vec2 startPoint;" "in float startDataX;" "in float startCompositeAngle;" "in vec2 endPoint;" "in float endDataX;" "in float endCompositeAngle;" "in float dataY;" "in float lineY;"; case ShaderType::Line: return "#version 150\n" "uniform vec2 scale;" "uniform float rowHeight;" "uniform float processingWidth;" "in vec2 startPoint;" "in vec2 endPoint;" "in float lineY;"; } } std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) { switch(type) { case ShaderType::Scan: return "out vec2 textureCoordinate;" "uniform usampler2D textureName;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY) / textureSize(textureName, 0);" "vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);" "gl_Position = vec4(eyePosition*2 - vec2(1.0), 0.0, 1.0);" "}"; case ShaderType::Line: return "out vec2 textureCoordinate;" "uniform sampler2D textureName;" "void main(void) {" "float lateral = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" "textureCoordinate = vec2(lateral * processingWidth, lineY) / vec2(1.0, textureSize(textureName, 0).y);" "vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;" "vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;" "vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (centrePoint + height);" "gl_Position = vec4(eyePosition, 0.0, 1.0);" "}"; } } void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) { switch(type) { case ShaderType::Scan: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].x)), 1); target.enable_vertex_attribute_with_pointer( prefix + "DataX", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].data_offset)), 1); target.enable_vertex_attribute_with_pointer( prefix + "CompositeAngle", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, scan.end_points[c].composite_angle)), 1); } target.enable_vertex_attribute_with_pointer( "dataY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, data_y)), 1); target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Scan), reinterpret_cast(offsetof(Scan, line)), 1); break; case ShaderType::Line: for(int c = 0; c < 2; ++c) { const std::string prefix = c ? "end" : "start"; target.enable_vertex_attribute_with_pointer( prefix + "Point", 2, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, end_points[c].x)), 1); } target.enable_vertex_attribute_with_pointer( "lineY", 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Line), reinterpret_cast(offsetof(Line, line)), 1); break; } } std::unique_ptr ScanTarget::input_shader(InputDataType input_data_type, OutputType output_type) { std::string fragment_shader = "#version 150\n" "out vec4 fragColour;" "in vec2 textureCoordinate;"; switch(input_data_type) { case InputDataType::Luminance1: fragment_shader += "uniform usampler2D textureName;" "void main(void) {"; switch(output_type) { case OutputType::RGB: fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rrr, 1.0);"; break; default: fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).r, 0.0, 0.0, 1.0);"; break; } fragment_shader += "}"; break; case InputDataType::Luminance8: break; // SVideo, // CompositeColour, // CompositeMonochrome case InputDataType::Phase8Luminance8: return nullptr; // fragment_shader += // "uniform sampler2D textureName;" // "void main(void) {"; // // switch(output_type) { // default: return nullptr; // // case OutputType::SVideo: // break; //// CompositeColour, //// CompositeMonochrome // } // // fragment_shader += "}"; // break; // TODO: write encoding functions for RGB -> composite/s-video for the RGB inputs. case InputDataType::Red1Green1Blue1: fragment_shader += "uniform usampler2D textureName;" "void main(void) {" "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = vec4(uvec3(textureValue) & uvec3(4u, 2u, 1u), 1.0);" "}"; break; case InputDataType::Red2Green2Blue2: fragment_shader += "uniform usampler2D textureName;" "void main(void) {" "uint textureValue = texture(textureName, textureCoordinate).r;" "fragColour = vec4(vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0, 1.0);" "}"; break; case InputDataType::Red4Green4Blue4: break; case InputDataType::Red8Green8Blue8: fragment_shader += "uniform usampler2D textureName;" "void main(void) {" "fragColour = vec4(texture(textureName, textureCoordinate).rgb / vec3(255.0), 1.0);" "}"; break; } return std::unique_ptr(new Shader( glsl_globals(ShaderType::Scan) + glsl_default_vertex_shader(ShaderType::Scan), fragment_shader )); }