// // ExecutorImplementation.hpp // Clock Signal // // Created by Thomas Harte on 01/05/2022. // Copyright © 2022 Thomas Harte. All rights reserved. // #ifndef InstructionSets_M68k_ExecutorImplementation_hpp #define InstructionSets_M68k_ExecutorImplementation_hpp #include "../Perform.hpp" #include namespace InstructionSet { namespace M68k { #define An(x) registers_[8 + x] #define Dn(x) registers_[x] #define sp An(7) template Executor::Executor(BusHandler &handler) : bus_handler_(handler) { reset(); } template void Executor::reset() { // Establish: supervisor state, all interrupts blocked. status_.set_status(0b0010'0011'1000'0000); did_update_status(); // Seed stack pointer and program counter. sp.l = read(0); program_counter_.l = read(4); } template template IntT Executor::read(uint32_t address) { // TODO: check for an alignment exception, both here and in write. return bus_handler_.template read(address); } template template void Executor::write(uint32_t address, IntT value) { bus_handler_.template write(address, value); } template void Executor::read(DataSize size, uint32_t address, CPU::SlicedInt32 &value) { switch(size) { case DataSize::Byte: value.b = read(address); break; case DataSize::Word: value.w = read(address); break; case DataSize::LongWord: value.l = read(address); break; } } template void Executor::write(DataSize size, uint32_t address, CPU::SlicedInt32 value) { switch(size) { case DataSize::Byte: write(address, value.b); break; case DataSize::Word: write(address, value.w); break; case DataSize::LongWord: write(address, value.l); break; } } template template IntT Executor::read_pc() { const IntT result = read(program_counter_.l); if constexpr (sizeof(IntT) == 4) { program_counter_.l += 4; } else { program_counter_.l += 2; } return result; } template uint32_t Executor::index_8bitdisplacement() { // TODO: if not a 68000, check bit 8 for whether this should be a full extension word; // also include the scale field even if not. const auto extension = read_pc(); const auto offset = int8_t(extension); const int register_index = (extension >> 12) & 7; const uint32_t displacement = registers_[register_index + ((extension >> 12) & 0x08)].l; const uint32_t sized_displacement = (extension & 0x800) ? displacement : int16_t(displacement); return offset + sized_displacement; } template typename Executor::EffectiveAddress Executor::calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index) { EffectiveAddress ea; switch(instruction.mode(index)) { case AddressingMode::None: // Permit an uninitialised effective address to be returned; // this value shouldn't be used. break; // // Operands that don't have effective addresses, which are returned as values. // case AddressingMode::DataRegisterDirect: ea.value = Dn(instruction.reg(index)); ea.requires_fetch = false; break; case AddressingMode::AddressRegisterDirect: ea.value = An(instruction.reg(index)); ea.requires_fetch = false; break; case AddressingMode::Quick: ea.value.l = quick(opcode, instruction.operation); ea.requires_fetch = false; break; case AddressingMode::ImmediateData: switch(instruction.operand_size()) { case DataSize::Byte: ea.value.l = read_pc() & 0xff; break; case DataSize::Word: ea.value.l = read_pc(); break; case DataSize::LongWord: ea.value.l = read_pc(); break; } ea.requires_fetch = false; break; // // Absolute addresses. // case AddressingMode::AbsoluteShort: ea.value.l = int16_t(read_pc()); ea.requires_fetch = true; break; case AddressingMode::AbsoluteLong: ea.value.l = read_pc(); ea.requires_fetch = true; break; // // Address register indirects. // case AddressingMode::AddressRegisterIndirect: ea.value = An(instruction.reg(index)); ea.requires_fetch = true; break; case AddressingMode::AddressRegisterIndirectWithPostincrement: { const auto reg = instruction.reg(index); ea.value = An(reg); ea.requires_fetch = true; switch(instruction.operand_size()) { case DataSize::Byte: An(reg).l += byte_increments[reg]; break; case DataSize::Word: An(reg).l += 2; break; case DataSize::LongWord: An(reg).l += 4; break; } } break; case AddressingMode::AddressRegisterIndirectWithPredecrement: { const auto reg = instruction.reg(index); switch(instruction.operand_size()) { case DataSize::Byte: An(reg).l -= byte_increments[reg]; break; case DataSize::Word: An(reg).l -= 2; break; case DataSize::LongWord: An(reg).l -= 4; break; } ea.value = An(reg); ea.requires_fetch = true; } break; case AddressingMode::AddressRegisterIndirectWithDisplacement: ea.value.l = An(instruction.reg(index)).l + int16_t(read_pc()); ea.requires_fetch = true; break; case AddressingMode::AddressRegisterIndirectWithIndex8bitDisplacement: ea.value.l = An(instruction.reg(index)).l + index_8bitdisplacement(); ea.requires_fetch = true; break; // // PC-relative addresses. // // TODO: rephrase these in terms of instruction_address_. Just for security // against whatever mutations the PC has been through already to get to here. // case AddressingMode::ProgramCounterIndirectWithDisplacement: ea.value.l = program_counter_.l + int16_t(read_pc()); ea.requires_fetch = true; break; case AddressingMode::ProgramCounterIndirectWithIndex8bitDisplacement: ea.value.l = program_counter_.l + index_8bitdisplacement(); ea.requires_fetch = true; break; default: // TODO. assert(false); break; } return ea; } template void Executor::run_for_instructions(int count) { while(count--) { // TODO: check interrupt level, trace flag. // Read the next instruction. instruction_address_ = program_counter_.l; const auto opcode = read_pc(); const Preinstruction instruction = decoder_.decode(opcode); if(!status_.is_supervisor_ && instruction.requires_supervisor()) { raise_exception(8); continue; } if(instruction.operation == Operation::Undefined) { switch(opcode & 0xf000) { default: raise_exception(4); continue; case 0xa000: raise_exception(10); continue; case 0xf000: raise_exception(11); continue; } } // Temporary storage. CPU::SlicedInt32 operand_[2]; EffectiveAddress effective_address_[2]; // Calculate effective addresses; copy 'addresses' into the // operands by default both: (i) because they might be values, // rather than addresses; and (ii) then they'll be there for use // by LEA and PEA. // // TODO: much of this work should be performed by a full Decoder, // so that it can be cached. effective_address_[0] = calculate_effective_address(instruction, opcode, 0); effective_address_[1] = calculate_effective_address(instruction, opcode, 1); operand_[0] = effective_address_[0].value; operand_[1] = effective_address_[1].value; // Obtain the appropriate sequence. // // TODO: make a decision about whether this goes into a fully-decoded Instruction. const auto flags = operand_flags(instruction.operation); // TODO: potential alignment exception, here and in store. #define fetch_operand(n) \ if(effective_address_[n].requires_fetch) { \ read(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \ } if(flags & FetchOp1) { fetch_operand(0); } if(flags & FetchOp2) { fetch_operand(1); } #undef fetch_operand perform(instruction, operand_[0], operand_[1], status_, *this); // TODO: rephrase to avoid conditional below. #define store_operand(n) \ if(!effective_address_[n].requires_fetch) { \ if(instruction.mode(n) == AddressingMode::DataRegisterDirect) { \ Dn(instruction.reg(n)) = operand_[n]; \ } else { \ An(instruction.reg(n)) = operand_[n]; \ } \ } else { \ write(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \ } if(flags & StoreOp1) { store_operand(0); } if(flags & StoreOp2) { store_operand(1); } #undef store_operand } } // MARK: - State template typename Executor::Registers Executor::get_state() { Registers result; for(int c = 0; c < 8; c++) { result.data[c] = Dn(c).l; } for(int c = 0; c < 7; c++) { result.address[c] = An(c).l; } result.status = status_.status(); result.program_counter = program_counter_.l; stack_pointers_[status_.is_supervisor_] = sp; result.user_stack_pointer = stack_pointers_[0].l; result.supervisor_stack_pointer = stack_pointers_[1].l; return result; } template void Executor::set_state(const Registers &state) { for(int c = 0; c < 8; c++) { Dn(c).l = state.data[c]; } for(int c = 0; c < 7; c++) { An(c).l = state.address[c]; } status_.set_status(state.status); program_counter_.l = state.program_counter; stack_pointers_[0].l = state.user_stack_pointer; stack_pointers_[1].l = state.supervisor_stack_pointer; sp = stack_pointers_[status_.is_supervisor_]; } // MARK: - Flow Control. // TODO: flow control, all below here. template void Executor::raise_exception(int index, bool use_current_instruction_pc) { const uint32_t address = index << 2; // Grab the status to store, then switch into supervisor mode. const uint16_t status = status_.status(); status_.is_supervisor_ = 1; did_update_status(); // Push status and the program counter at instruction start. write(sp.l - 4, use_current_instruction_pc ? instruction_address_ : program_counter_.l); write(sp.l - 6, status); sp.l -= 6; // Fetch the new program counter. program_counter_.l = read(address); } template void Executor::did_update_status() { // Shuffle the stack pointers. stack_pointers_[active_stack_pointer_] = sp; sp = stack_pointers_[status_.is_supervisor_]; active_stack_pointer_ = status_.is_supervisor_; } template void Executor::stop() {} template void Executor::set_pc(uint32_t address) { program_counter_.l = address; } template void Executor::add_pc(uint32_t offset) { program_counter_.l = instruction_address_ + offset; } template void Executor::bsr(uint32_t offset) { sp.l -= 4; write(sp.l, program_counter_.l); program_counter_.l = instruction_address_ + offset; } template void Executor::jsr(uint32_t address) { sp.l -= 4; write(sp.l, program_counter_.l); program_counter_.l = address; } template void Executor::link(Preinstruction instruction, uint32_t offset) { const auto reg = 8 + instruction.reg<0>(); sp.l -= 4; write(sp.l, Dn(reg).l); Dn(reg) = sp; sp.l += offset; } template void Executor::unlink(uint32_t &address) { sp.l = address; address = read(sp.l); sp.l += 4; } template void Executor::pea(uint32_t address) { sp.l -= 4; write(sp.l, address); } template void Executor::rtr() { status_.set_ccr(read(sp.l)); sp.l += 2; rts(); } template void Executor::rte() { status_.set_status(read(sp.l)); sp.l += 2; rts(); } template void Executor::rts() { program_counter_.l = read(sp.l); sp.l += 4; } template void Executor::tas(Preinstruction instruction, uint32_t address) { uint8_t value; if(instruction.mode<0>() != AddressingMode::DataRegisterDirect) { value = read(address); write(address, value | 0x80); } else { value = uint8_t(address); Dn(instruction.reg<0>()).b = uint8_t(address | 0x80); } status_.overflow_flag_ = status_.carry_flag_ = 0; status_.zero_result_ = value; status_.negative_flag_ = value & 0x80; } template template void Executor::movep(Preinstruction instruction, uint32_t source, uint32_t dest) { if(instruction.mode<0>() == AddressingMode::DataRegisterDirect) { // Move register to memory. const uint32_t reg = source; uint32_t address = dest; if constexpr (sizeof(IntT) == 4) { write(address, uint8_t(reg >> 24)); address += 2; write(address, uint8_t(reg >> 16)); address += 2; } write(address, uint8_t(reg >> 8)); address += 2; write(address, uint8_t(reg)); } else { // Move memory to register. uint32_t ® = Dn(instruction.reg<1>()).l; uint32_t address = source; if constexpr (sizeof(IntT) == 4) { reg = read(address) << 24; address += 2; reg |= read(address) << 16; address += 2; } else { reg &= 0xffff0000; } reg |= read(address) << 8; address += 2; reg |= read(address); } } template template void Executor::movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest) { // Move registers to memory. This is the only permitted use of the predecrement mode, // which reverses output order. if(instruction.mode<1>() == AddressingMode::AddressRegisterIndirectWithPredecrement) { // The structure of the code in the mainline part of the executor is such // that the address register will already have been predecremented before // reaching here, and it'll have been by two bytes per the operand size // rather than according to the instruction size. That's not wanted, so undo it. // // TODO: with the caveat that the 68020+ have different behaviour: // // "For the MC68020, MC68030, MC68040, and CPU32, if the addressing register is also // moved to memory, the value written is the initial register value decremented by the // size of the operation. The MC68000 and MC68010 write the initial register value // (not decremented)." An(instruction.reg<1>()).l += 2; uint32_t address = An(instruction.reg<1>()).l; int index = 15; while(source) { if(source & 1) { address -= sizeof(IntT); write(address, IntT(registers_[index].l)); } --index; source >>= 1; } An(instruction.reg<1>()).l = address; return; } int index = 0; while(source) { if(source & 1) { write(dest, IntT(registers_[index].l)); dest += sizeof(IntT); } ++index; source >>= 1; } } template template void Executor::movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest) { // Move memory to registers. // // A 68000 convention has been broken here; the instruction form is: // MOVEM , # // ... but the instruction is encoded as [MOVEM] [#] [ea]. // // This project's decoder decodes as #, . int index = 0; while(source) { if(source & 1) { if constexpr (sizeof(IntT) == 2) { registers_[index].l = int16_t(read(dest)); } else { registers_[index].l = read(dest); } dest += sizeof(IntT); } ++index; source >>= 1; } if(instruction.mode<1>() == AddressingMode::AddressRegisterIndirectWithPostincrement) { // "If the effective address is specified by the postincrement mode ... // [i]f the addressing register is also loaded from memory, the memory value is // ignored and the register is written with the postincremented effective address." An(instruction.reg<1>()).l = dest; } } #undef sp #undef Dn #undef An } } #endif /* InstructionSets_M68k_ExecutorImplementation_hpp */