// // ClockReceiver.hpp // Clock Signal // // Created by Thomas Harte on 22/07/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #ifndef ClockReceiver_hpp #define ClockReceiver_hpp /* Informal pattern for all classes that run from a clock cycle: Each will implement either or both of run_for(Cycles) and run_for(HalfCycles), as is appropriate. Callers that are accumulating HalfCycles but want to talk to receivers that implement only run_for(Cycles) can use HalfCycle.flush_cycles if they have appropriate storage, or can wrap the receiver in HalfClockReceiver in order automatically to bind half-cycle storage to it. Alignment rule: run_for(Cycles) may be called only after an even number of half cycles. E.g. the following sequence will have undefined results: run_for(HalfCycles(1)) run_for(Cycles(1)) An easy way to ensure this as a caller is to pick only one of run_for(Cycles) and run_for(HalfCycles) to use. Reasoning: Users of this template may with to implement run_for(Cycles) and run_for(HalfCycles) where there is a need to implement at half-cycle precision but a faster execution path can be offered for full-cycle precision. Those users are permitted to assume phase in run_for(Cycles) and should do so to be compatible with callers that use only run_for(Cycles). Corollary: Starting from nothing, the first run_for(HalfCycles(1)) will do the **first** half of a full cycle. The second will do the second half. Etc. */ /*! Provides a class that wraps a plain int, providing most of the basic arithmetic and Boolean operators, but forcing callers and receivers to be explicit as to usage. */ template class WrappedInt { public: inline WrappedInt(int l) : length_(l) {} inline WrappedInt() : length_(0) {} inline T &operator =(const T &rhs) { length_ = rhs.length_; return *this; } inline T &operator +=(const T &rhs) { length_ += rhs.length_; return *static_cast(this); } inline T &operator -=(const T &rhs) { length_ -= rhs.length_; return *static_cast(this); } inline T &operator ++() { ++ length_; return *static_cast(this); } inline T &operator ++(int) { length_ ++; return *static_cast(this); } inline T &operator --() { -- length_; return *static_cast(this); } inline T &operator --(int) { length_ --; return *static_cast(this); } inline T &operator %=(const T &rhs) { length_ %= rhs.length_; return *static_cast(this); } inline T &operator &=(const T &rhs) { length_ &= rhs.length_; return *static_cast(this); } inline T operator +(const T &rhs) const { return T(length_ + rhs.length_); } inline T operator -(const T &rhs) const { return T(length_ - rhs.length_); } inline T operator %(const T &rhs) const { return T(length_ % rhs.length_); } inline T operator &(const T &rhs) const { return T(length_ & rhs.length_); } inline T operator -() const { return T(- length_); } inline bool operator <(const T &rhs) const { return length_ < rhs.length_; } inline bool operator >(const T &rhs) const { return length_ > rhs.length_; } inline bool operator <=(const T &rhs) const { return length_ <= rhs.length_; } inline bool operator >=(const T &rhs) const { return length_ >= rhs.length_; } inline bool operator ==(const T &rhs) const { return length_ == rhs.length_; } inline bool operator !=(const T &rhs) const { return length_ != rhs.length_; } inline bool operator !() const { return !length_; } // bool operator () is not supported because it offers an implicit cast to int, which is prone silently to permit misuse inline int as_int() const { return length_; } /*! Severs from @c this the effect of dividing by @c divisor — @c this will end up with the value of @c this modulo @c divisor and @c divided by @c divisor is returned. */ inline T divide(const T &divisor) { T result(length_ / divisor.length_); length_ %= divisor.length_; return result; } /*! Flushes the value in @c this. The current value is returned, and the internal value is reset to zero. */ inline T flush() { T result(length_); length_ = 0; return result; } // operator int() is deliberately not provided, to avoid accidental subtitution of // classes that use this template. protected: int length_; }; /// Describes an integer number of whole cycles — pairs of clock signal transitions. class Cycles: public WrappedInt { public: inline Cycles(int l) : WrappedInt(l) {} inline Cycles() : WrappedInt() {} inline Cycles(const Cycles &cycles) : WrappedInt(cycles.length_) {} }; /// Describes an integer number of half cycles — single clock signal transitions. class HalfCycles: public WrappedInt { public: inline HalfCycles(int l) : WrappedInt(l) {} inline HalfCycles() : WrappedInt() {} inline HalfCycles(const Cycles cycles) : WrappedInt(cycles.as_int() << 1) {} inline HalfCycles(const HalfCycles &half_cycles) : WrappedInt(half_cycles.length_) {} /// @returns The number of whole cycles completely covered by this span of half cycles. inline Cycles cycles() { return Cycles(length_ >> 1); } ///Flushes the whole cycles in @c this, subtracting that many from the total stored here. inline Cycles flush_cycles() { Cycles result(length_ >> 1); length_ &= 1; return result; } /*! Severs from @c this the effect of dividing by @c divisor — @c this will end up with the value of @c this modulo @c divisor and @c divided by @c divisor is returned. */ inline Cycles divide_cycles(const Cycles &divisor) { HalfCycles half_divisor = HalfCycles(divisor); Cycles result(length_ / half_divisor.length_); length_ %= half_divisor.length_; return result; } }; /*! If a component implements only run_for(Cycles), an owner can wrap it in HalfClockReceiver automatically to gain run_for(HalfCycles). */ template class HalfClockReceiver: public T { public: using T::T; using T::run_for; inline void run_for(const HalfCycles half_cycles) { half_cycles_ += half_cycles; T::run_for(half_cycles_.flush_cycles()); } private: HalfCycles half_cycles_; }; #endif /* ClockReceiver_hpp */