1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Outputs/CRT/CRT.cpp

404 lines
16 KiB
C++

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include "CRTOpenGL.hpp"
#include <stdarg.h>
#include <math.h>
using namespace Outputs::CRT;
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{
_colour_space = colour_space;
_colour_cycle_numerator = colour_cycle_numerator;
_colour_cycle_denominator = colour_cycle_denominator;
const unsigned int syncCapacityLineChargeThreshold = 3;
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid
// To quote:
//
// "retrace interval; The interval of time for the return of the blanked scanning beam of
// a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
_time_multiplier = (2000 + cycles_per_line - 1) / cycles_per_line;
// store fundamental display configuration properties
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line * _time_multiplier;
// generate timing values implied by the given arbuments
_sync_capacitor_charge_threshold = ((syncCapacityLineChargeThreshold * _cycles_per_line) * 50) >> 7;
// create the two flywheels
_horizontal_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6));
_vertical_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line));
// figure out the divisor necessary to get the horizontal flywheel into a 16-bit range
unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor);
_vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor));
}
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType)
{
switch(displayType)
{
case DisplayType::PAL50:
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4);
break;
case DisplayType::NTSC60:
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2);
break;
}
}
void CRT::allocate_buffers(unsigned int number, va_list sizes)
{
_run_builders = new CRTRunBuilder *[NumberOfFields];
for(int builder = 0; builder < NumberOfFields; builder++)
{
_run_builders[builder] = new CRTRunBuilder(OutputVertexSize);
}
_composite_src_runs = std::unique_ptr<CRTRunBuilder>(new CRTRunBuilder(InputVertexSize));
va_list va;
va_copy(va, sizes);
_buffer_builder = std::unique_ptr<CRTInputBufferBuilder>(new CRTInputBufferBuilder(number, va));
va_end(va);
}
CRT::CRT(unsigned int common_output_divisor) :
_run_write_pointer(0),
_sync_capacitor_charge_level(0),
_is_receiving_sync(false),
_output_mutex(new std::mutex),
_visible_area(Rect(0, 0, 1, 1)),
_sync_period(0),
_common_output_divisor(common_output_divisor),
_composite_src_output_y(0),
_is_writing_composite_run(false)
{
construct_openGL();
}
CRT::~CRT()
{
for(int builder = 0; builder < NumberOfFields; builder++)
{
delete _run_builders[builder];
}
delete[] _run_builders;
destruct_openGL();
}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int number_of_buffers, ...) : CRT(common_output_divisor)
{
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
va_list buffer_sizes;
va_start(buffer_sizes, number_of_buffers);
allocate_buffers(number_of_buffers, buffer_sizes);
va_end(buffer_sizes);
}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int number_of_buffers, ...) : CRT(common_output_divisor)
{
set_new_display_type(cycles_per_line, displayType);
va_list buffer_sizes;
va_start(buffer_sizes, number_of_buffers);
allocate_buffers(number_of_buffers, buffer_sizes);
va_end(buffer_sizes);
}
#pragma mark - Sync loop
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{
return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
}
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{
return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
}
#define output_position_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 0])
#define output_position_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 2])
#define output_tex_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 0])
#define output_tex_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 2])
#define output_lateral(v) next_run[OutputVertexSize*v + OutputVertexOffsetOfLateral]
#define output_timestamp(v) (*(uint32_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTimestamp])
#define input_input_position_x(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfInputPosition + 0])
#define input_input_position_y(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfInputPosition + 2])
#define input_output_position_x(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfOutputPosition + 0])
#define input_output_position_y(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfOutputPosition + 2])
#define input_phase(v) next_run[OutputVertexSize*v + InputVertexOffsetOfPhaseAndAmplitude + 0]
#define input_amplitude(v) next_run[OutputVertexSize*v + InputVertexOffsetOfPhaseAndAmplitude + 1]
#define input_phase_time(v) (*(uint16_t *)&next_run[OutputVertexSize*v + InputVertexOffsetOfPhaseTime])
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Type type, uint16_t tex_x, uint16_t tex_y)
{
number_of_cycles *= _time_multiplier;
bool is_output_run = ((type == Type::Level) || (type == Type::Data));
while(number_of_cycles) {
unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event;
Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
hsync_requested = false;
vsync_requested = false;
bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
uint8_t *next_run = nullptr;
if(is_output_segment)
{
_output_mutex->lock();
next_run = (_output_device == Monitor) ? _run_builders[_run_write_pointer]->get_next_run(6) : _composite_src_runs->get_next_run(2);
}
// Vertex output is arranged for triangle strips, as:
//
// 2 [4/5]
//
// [0/1] 3
if(next_run)
{
if(_output_device == Monitor)
{
// set the type, initial raster position and type of this run
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
output_timestamp(0) = output_timestamp(1) = output_timestamp(2) = _run_builders[_run_write_pointer]->duration;
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = tex_x;
// these things are constants across the line so just throw them out now
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = output_tex_y(3) = output_tex_y(4) = output_tex_y(5) = tex_y;
output_lateral(0) = output_lateral(1) = output_lateral(3) = 0;
output_lateral(2) = output_lateral(4) = output_lateral(5) = 1;
}
else
{
input_input_position_x(0) = tex_x;
input_input_position_y(0) = input_input_position_y(1) = tex_y;
input_output_position_x(0) = (uint16_t)_horizontal_flywheel->get_current_output_position();
input_output_position_y(0) = input_output_position_y(1) = _composite_src_output_y;
input_phase(0) = input_phase(1) = _colour_burst_phase;
input_amplitude(0) = input_amplitude(1) = _colour_burst_amplitude;
input_phase_time(0) = input_phase_time(1) = _colour_burst_time;
}
}
// decrement the number of cycles left to run for and increment the
// horizontal counter appropriately
number_of_cycles -= next_run_length;
_run_builders[_run_write_pointer]->duration += next_run_length;
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if (vsync_charging && !_vertical_flywheel->is_in_retrace())
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0);
// react to the incoming event...
_horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
_vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
if(next_run)
{
// if this is a data run then advance the buffer pointer
if(type == Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider);
if(_output_device == Monitor)
{
// store the final raster position
output_position_x(3) = output_position_x(4) = output_position_x(5) = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_position_y(3) = output_position_y(4) = output_position_y(5) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
output_timestamp(3) = output_timestamp(4) = output_timestamp(5) = _run_builders[_run_write_pointer]->duration;
output_tex_x(3) = output_tex_x(4) = output_tex_x(5) = tex_x;
}
else
{
input_input_position_x(1) = tex_x;
input_output_position_x(1) = (uint16_t)_horizontal_flywheel->get_current_output_position();
}
}
if(is_output_segment)
{
_output_mutex->unlock();
}
// if this is horizontal retrace then advance the output line counter and bookend an output run
if(_output_device == Television)
{
Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None;
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event;
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event;
bool needs_endpoint =
(honoured_event == Flywheel::SyncEvent::StartRetrace && _is_writing_composite_run) ||
(honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
if(needs_endpoint)
{
uint8_t *next_run = _run_builders[_run_write_pointer]->get_next_run(3);
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
output_timestamp(0) = output_timestamp(1) = output_timestamp(2) = _run_builders[_run_write_pointer]->duration;
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = _composite_src_output_y;
output_lateral(0) = 0;
output_lateral(1) = _is_writing_composite_run ? 1 : 0;
output_lateral(2) = 1;
_is_writing_composite_run ^= true;
}
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::EndRetrace)
{
_composite_src_output_y = (_composite_src_output_y + 1) % IntermediateBufferHeight;
}
}
// if this is vertical retrace then adcance a field
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace)
{
// TODO: how to communicate did_detect_vsync? Bring the delegate back?
// _delegate->crt_did_end_frame(this, &_current_frame_builder->frame, _did_detect_vsync);
_run_write_pointer = (_run_write_pointer + 1)%NumberOfFields;
_run_builders[_run_write_pointer]->reset();
}
}
}
#undef output_position_x
#undef output_position_y
#undef output_tex_x
#undef output_tex_y
#undef output_lateral
#undef output_timestamp
#undef input_input_position_x
#undef input_input_position_y
#undef input_output_position_x
#undef input_output_position_y
#undef input_phase
#undef input_amplitude
#undef input_phase_age
#pragma mark - stream feeding methods
void CRT::output_scan(Scan *scan)
{
bool this_is_sync = (scan->type == Type::Sync);
bool is_trailing_edge = (_is_receiving_sync && !this_is_sync);
bool hsync_requested = is_trailing_edge && (_sync_period < (_horizontal_flywheel->get_scan_period() >> 2));
bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold);
_is_receiving_sync = this_is_sync;
// simplified colour burst logic: if it's within the back porch we'll take it
if(scan->type == Type::ColourBurst)
{
if(_horizontal_flywheel->get_current_time() < (_horizontal_flywheel->get_standard_period() * 12) >> 6)
{
_colour_burst_time = (uint16_t)_colour_burst_time;
_colour_burst_phase = scan->phase;
_colour_burst_amplitude = scan->amplitude;
}
}
// TODO: inspect raw data for potential colour burst if required
_sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0;
advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y);
}
/*
These all merely channel into advance_cycles, supplying appropriate arguments
*/
void CRT::output_sync(unsigned int number_of_cycles)
{
Scan scan{
.type = Type::Sync,
.number_of_cycles = number_of_cycles
};
output_scan(&scan);
}
void CRT::output_blank(unsigned int number_of_cycles)
{
Scan scan {
.type = Type::Blank,
.number_of_cycles = number_of_cycles
};
output_scan(&scan);
}
void CRT::output_level(unsigned int number_of_cycles)
{
Scan scan {
.type = Type::Level,
.number_of_cycles = number_of_cycles,
.tex_x = _buffer_builder->_write_x_position,
.tex_y = _buffer_builder->_write_y_position
};
output_scan(&scan);
}
void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude)
{
Scan scan {
.type = Type::ColourBurst,
.number_of_cycles = number_of_cycles,
.phase = phase,
.amplitude = amplitude
};
output_scan(&scan);
}
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
{
_buffer_builder->reduce_previous_allocation_to(number_of_cycles / source_divider);
Scan scan {
.type = Type::Data,
.number_of_cycles = number_of_cycles,
.tex_x = _buffer_builder->_write_x_position,
.tex_y = _buffer_builder->_write_y_position,
.source_divider = source_divider
};
output_scan(&scan);
}
#pragma mark - Buffer supply
void CRT::allocate_write_area(size_t required_length)
{
_output_mutex->lock();
_buffer_builder->allocate_write_area(required_length);
_output_mutex->unlock();
}
uint8_t *CRT::get_write_target_for_buffer(int buffer)
{
return _buffer_builder->get_write_target_for_buffer(buffer);
}