mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-19 23:32:28 +00:00
404 lines
16 KiB
C++
404 lines
16 KiB
C++
//
|
|
// CRT.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 19/07/2015.
|
|
// Copyright © 2015 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "CRT.hpp"
|
|
#include "CRTOpenGL.hpp"
|
|
#include <stdarg.h>
|
|
#include <math.h>
|
|
|
|
using namespace Outputs::CRT;
|
|
|
|
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
|
|
{
|
|
_colour_space = colour_space;
|
|
_colour_cycle_numerator = colour_cycle_numerator;
|
|
_colour_cycle_denominator = colour_cycle_denominator;
|
|
|
|
const unsigned int syncCapacityLineChargeThreshold = 3;
|
|
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
|
|
const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid
|
|
|
|
// To quote:
|
|
//
|
|
// "retrace interval; The interval of time for the return of the blanked scanning beam of
|
|
// a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs
|
|
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
|
|
|
|
_time_multiplier = (2000 + cycles_per_line - 1) / cycles_per_line;
|
|
|
|
// store fundamental display configuration properties
|
|
_height_of_display = height_of_display;
|
|
_cycles_per_line = cycles_per_line * _time_multiplier;
|
|
|
|
// generate timing values implied by the given arbuments
|
|
_sync_capacitor_charge_threshold = ((syncCapacityLineChargeThreshold * _cycles_per_line) * 50) >> 7;
|
|
|
|
// create the two flywheels
|
|
_horizontal_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6));
|
|
_vertical_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line));
|
|
|
|
// figure out the divisor necessary to get the horizontal flywheel into a 16-bit range
|
|
unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor);
|
|
_vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor));
|
|
}
|
|
|
|
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType)
|
|
{
|
|
switch(displayType)
|
|
{
|
|
case DisplayType::PAL50:
|
|
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4);
|
|
break;
|
|
|
|
case DisplayType::NTSC60:
|
|
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CRT::allocate_buffers(unsigned int number, va_list sizes)
|
|
{
|
|
_run_builders = new CRTRunBuilder *[NumberOfFields];
|
|
for(int builder = 0; builder < NumberOfFields; builder++)
|
|
{
|
|
_run_builders[builder] = new CRTRunBuilder(OutputVertexSize);
|
|
}
|
|
_composite_src_runs = std::unique_ptr<CRTRunBuilder>(new CRTRunBuilder(InputVertexSize));
|
|
|
|
va_list va;
|
|
va_copy(va, sizes);
|
|
_buffer_builder = std::unique_ptr<CRTInputBufferBuilder>(new CRTInputBufferBuilder(number, va));
|
|
va_end(va);
|
|
}
|
|
|
|
CRT::CRT(unsigned int common_output_divisor) :
|
|
_run_write_pointer(0),
|
|
_sync_capacitor_charge_level(0),
|
|
_is_receiving_sync(false),
|
|
_output_mutex(new std::mutex),
|
|
_visible_area(Rect(0, 0, 1, 1)),
|
|
_sync_period(0),
|
|
_common_output_divisor(common_output_divisor),
|
|
_composite_src_output_y(0),
|
|
_is_writing_composite_run(false)
|
|
{
|
|
construct_openGL();
|
|
}
|
|
|
|
CRT::~CRT()
|
|
{
|
|
for(int builder = 0; builder < NumberOfFields; builder++)
|
|
{
|
|
delete _run_builders[builder];
|
|
}
|
|
delete[] _run_builders;
|
|
destruct_openGL();
|
|
}
|
|
|
|
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int number_of_buffers, ...) : CRT(common_output_divisor)
|
|
{
|
|
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
|
|
|
|
va_list buffer_sizes;
|
|
va_start(buffer_sizes, number_of_buffers);
|
|
allocate_buffers(number_of_buffers, buffer_sizes);
|
|
va_end(buffer_sizes);
|
|
}
|
|
|
|
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int number_of_buffers, ...) : CRT(common_output_divisor)
|
|
{
|
|
set_new_display_type(cycles_per_line, displayType);
|
|
|
|
va_list buffer_sizes;
|
|
va_start(buffer_sizes, number_of_buffers);
|
|
allocate_buffers(number_of_buffers, buffer_sizes);
|
|
va_end(buffer_sizes);
|
|
}
|
|
|
|
#pragma mark - Sync loop
|
|
|
|
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
|
|
{
|
|
return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
|
|
}
|
|
|
|
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
|
|
{
|
|
return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
|
|
}
|
|
|
|
#define output_position_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 0])
|
|
#define output_position_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 2])
|
|
#define output_tex_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 0])
|
|
#define output_tex_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 2])
|
|
#define output_lateral(v) next_run[OutputVertexSize*v + OutputVertexOffsetOfLateral]
|
|
#define output_timestamp(v) (*(uint32_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTimestamp])
|
|
|
|
#define input_input_position_x(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfInputPosition + 0])
|
|
#define input_input_position_y(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfInputPosition + 2])
|
|
#define input_output_position_x(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfOutputPosition + 0])
|
|
#define input_output_position_y(v) (*(uint16_t *)&next_run[InputVertexSize*v + InputVertexOffsetOfOutputPosition + 2])
|
|
#define input_phase(v) next_run[OutputVertexSize*v + InputVertexOffsetOfPhaseAndAmplitude + 0]
|
|
#define input_amplitude(v) next_run[OutputVertexSize*v + InputVertexOffsetOfPhaseAndAmplitude + 1]
|
|
#define input_phase_time(v) (*(uint16_t *)&next_run[OutputVertexSize*v + InputVertexOffsetOfPhaseTime])
|
|
|
|
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Type type, uint16_t tex_x, uint16_t tex_y)
|
|
{
|
|
number_of_cycles *= _time_multiplier;
|
|
|
|
bool is_output_run = ((type == Type::Level) || (type == Type::Data));
|
|
|
|
while(number_of_cycles) {
|
|
|
|
unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event;
|
|
Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
|
|
Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
|
|
|
|
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
|
|
// set it to false for the next run through this loop (if any)
|
|
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
|
|
|
|
hsync_requested = false;
|
|
vsync_requested = false;
|
|
|
|
bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
|
|
uint8_t *next_run = nullptr;
|
|
if(is_output_segment)
|
|
{
|
|
_output_mutex->lock();
|
|
next_run = (_output_device == Monitor) ? _run_builders[_run_write_pointer]->get_next_run(6) : _composite_src_runs->get_next_run(2);
|
|
}
|
|
|
|
// Vertex output is arranged for triangle strips, as:
|
|
//
|
|
// 2 [4/5]
|
|
//
|
|
// [0/1] 3
|
|
if(next_run)
|
|
{
|
|
if(_output_device == Monitor)
|
|
{
|
|
// set the type, initial raster position and type of this run
|
|
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
|
|
output_timestamp(0) = output_timestamp(1) = output_timestamp(2) = _run_builders[_run_write_pointer]->duration;
|
|
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = tex_x;
|
|
|
|
// these things are constants across the line so just throw them out now
|
|
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = output_tex_y(3) = output_tex_y(4) = output_tex_y(5) = tex_y;
|
|
output_lateral(0) = output_lateral(1) = output_lateral(3) = 0;
|
|
output_lateral(2) = output_lateral(4) = output_lateral(5) = 1;
|
|
}
|
|
else
|
|
{
|
|
input_input_position_x(0) = tex_x;
|
|
input_input_position_y(0) = input_input_position_y(1) = tex_y;
|
|
input_output_position_x(0) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
input_output_position_y(0) = input_output_position_y(1) = _composite_src_output_y;
|
|
input_phase(0) = input_phase(1) = _colour_burst_phase;
|
|
input_amplitude(0) = input_amplitude(1) = _colour_burst_amplitude;
|
|
input_phase_time(0) = input_phase_time(1) = _colour_burst_time;
|
|
}
|
|
}
|
|
|
|
// decrement the number of cycles left to run for and increment the
|
|
// horizontal counter appropriately
|
|
number_of_cycles -= next_run_length;
|
|
_run_builders[_run_write_pointer]->duration += next_run_length;
|
|
|
|
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
|
|
if (vsync_charging && !_vertical_flywheel->is_in_retrace())
|
|
_sync_capacitor_charge_level += next_run_length;
|
|
else
|
|
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0);
|
|
|
|
// react to the incoming event...
|
|
_horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
|
|
_vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
|
|
|
|
if(next_run)
|
|
{
|
|
// if this is a data run then advance the buffer pointer
|
|
if(type == Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider);
|
|
|
|
if(_output_device == Monitor)
|
|
{
|
|
// store the final raster position
|
|
output_position_x(3) = output_position_x(4) = output_position_x(5) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_position_y(3) = output_position_y(4) = output_position_y(5) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
|
|
output_timestamp(3) = output_timestamp(4) = output_timestamp(5) = _run_builders[_run_write_pointer]->duration;
|
|
output_tex_x(3) = output_tex_x(4) = output_tex_x(5) = tex_x;
|
|
}
|
|
else
|
|
{
|
|
input_input_position_x(1) = tex_x;
|
|
input_output_position_x(1) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
}
|
|
}
|
|
|
|
if(is_output_segment)
|
|
{
|
|
_output_mutex->unlock();
|
|
}
|
|
|
|
// if this is horizontal retrace then advance the output line counter and bookend an output run
|
|
if(_output_device == Television)
|
|
{
|
|
Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None;
|
|
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event;
|
|
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event;
|
|
bool needs_endpoint =
|
|
(honoured_event == Flywheel::SyncEvent::StartRetrace && _is_writing_composite_run) ||
|
|
(honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
|
|
|
|
if(needs_endpoint)
|
|
{
|
|
uint8_t *next_run = _run_builders[_run_write_pointer]->get_next_run(3);
|
|
|
|
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
|
|
output_timestamp(0) = output_timestamp(1) = output_timestamp(2) = _run_builders[_run_write_pointer]->duration;
|
|
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = _composite_src_output_y;
|
|
output_lateral(0) = 0;
|
|
output_lateral(1) = _is_writing_composite_run ? 1 : 0;
|
|
output_lateral(2) = 1;
|
|
|
|
_is_writing_composite_run ^= true;
|
|
}
|
|
|
|
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::EndRetrace)
|
|
{
|
|
_composite_src_output_y = (_composite_src_output_y + 1) % IntermediateBufferHeight;
|
|
}
|
|
}
|
|
|
|
// if this is vertical retrace then adcance a field
|
|
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace)
|
|
{
|
|
// TODO: how to communicate did_detect_vsync? Bring the delegate back?
|
|
// _delegate->crt_did_end_frame(this, &_current_frame_builder->frame, _did_detect_vsync);
|
|
|
|
_run_write_pointer = (_run_write_pointer + 1)%NumberOfFields;
|
|
_run_builders[_run_write_pointer]->reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef output_position_x
|
|
#undef output_position_y
|
|
#undef output_tex_x
|
|
#undef output_tex_y
|
|
#undef output_lateral
|
|
#undef output_timestamp
|
|
|
|
#undef input_input_position_x
|
|
#undef input_input_position_y
|
|
#undef input_output_position_x
|
|
#undef input_output_position_y
|
|
#undef input_phase
|
|
#undef input_amplitude
|
|
#undef input_phase_age
|
|
|
|
#pragma mark - stream feeding methods
|
|
|
|
void CRT::output_scan(Scan *scan)
|
|
{
|
|
bool this_is_sync = (scan->type == Type::Sync);
|
|
bool is_trailing_edge = (_is_receiving_sync && !this_is_sync);
|
|
bool hsync_requested = is_trailing_edge && (_sync_period < (_horizontal_flywheel->get_scan_period() >> 2));
|
|
bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold);
|
|
_is_receiving_sync = this_is_sync;
|
|
|
|
// simplified colour burst logic: if it's within the back porch we'll take it
|
|
if(scan->type == Type::ColourBurst)
|
|
{
|
|
if(_horizontal_flywheel->get_current_time() < (_horizontal_flywheel->get_standard_period() * 12) >> 6)
|
|
{
|
|
_colour_burst_time = (uint16_t)_colour_burst_time;
|
|
_colour_burst_phase = scan->phase;
|
|
_colour_burst_amplitude = scan->amplitude;
|
|
}
|
|
}
|
|
|
|
// TODO: inspect raw data for potential colour burst if required
|
|
|
|
_sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0;
|
|
advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y);
|
|
}
|
|
|
|
/*
|
|
These all merely channel into advance_cycles, supplying appropriate arguments
|
|
*/
|
|
void CRT::output_sync(unsigned int number_of_cycles)
|
|
{
|
|
Scan scan{
|
|
.type = Type::Sync,
|
|
.number_of_cycles = number_of_cycles
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_blank(unsigned int number_of_cycles)
|
|
{
|
|
Scan scan {
|
|
.type = Type::Blank,
|
|
.number_of_cycles = number_of_cycles
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_level(unsigned int number_of_cycles)
|
|
{
|
|
Scan scan {
|
|
.type = Type::Level,
|
|
.number_of_cycles = number_of_cycles,
|
|
.tex_x = _buffer_builder->_write_x_position,
|
|
.tex_y = _buffer_builder->_write_y_position
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude)
|
|
{
|
|
Scan scan {
|
|
.type = Type::ColourBurst,
|
|
.number_of_cycles = number_of_cycles,
|
|
.phase = phase,
|
|
.amplitude = amplitude
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
|
|
{
|
|
_buffer_builder->reduce_previous_allocation_to(number_of_cycles / source_divider);
|
|
Scan scan {
|
|
.type = Type::Data,
|
|
.number_of_cycles = number_of_cycles,
|
|
.tex_x = _buffer_builder->_write_x_position,
|
|
.tex_y = _buffer_builder->_write_y_position,
|
|
.source_divider = source_divider
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
#pragma mark - Buffer supply
|
|
|
|
void CRT::allocate_write_area(size_t required_length)
|
|
{
|
|
_output_mutex->lock();
|
|
_buffer_builder->allocate_write_area(required_length);
|
|
_output_mutex->unlock();
|
|
}
|
|
|
|
uint8_t *CRT::get_write_target_for_buffer(int buffer)
|
|
{
|
|
return _buffer_builder->get_write_target_for_buffer(buffer);
|
|
}
|