1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Outputs/CRT/CRT.cpp

408 lines
16 KiB
C++

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include "CRTOpenGL.hpp"
#include <stdarg.h>
#include <math.h>
#include <algorithm>
using namespace Outputs::CRT;
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{
_openGL_output_builder->set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator);
const unsigned int syncCapacityLineChargeThreshold = 2;
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid
// To quote:
//
// "retrace interval; The interval of time for the return of the blanked scanning beam of
// a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
_time_multiplier = IntermediateBufferWidth / cycles_per_line;
// store fundamental display configuration properties
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line * _time_multiplier;
// generate timing values implied by the given arbuments
_sync_capacitor_charge_threshold = (int)(syncCapacityLineChargeThreshold * _cycles_per_line);
// create the two flywheels
_horizontal_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6));
_vertical_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line));
// figure out the divisor necessary to get the horizontal flywheel into a 16-bit range
unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor);
_vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor));
_openGL_output_builder->set_timing(cycles_per_line, _cycles_per_line, _height_of_display, _horizontal_flywheel->get_scan_period(), _vertical_flywheel->get_scan_period(), _vertical_flywheel_output_divider);
}
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType)
{
switch(displayType)
{
case DisplayType::PAL50:
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4);
break;
case DisplayType::NTSC60:
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2);
break;
}
}
CRT::CRT(unsigned int common_output_divisor) :
_sync_capacitor_charge_level(0),
_is_receiving_sync(false),
_sync_period(0),
_common_output_divisor(common_output_divisor),
_is_writing_composite_run(false),
_delegate(nullptr),
_frames_since_last_delegate_call(0),
_did_start_run(false) {}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) : CRT(common_output_divisor)
{
_openGL_output_builder = std::unique_ptr<OpenGLOutputBuilder>(new OpenGLOutputBuilder(buffer_depth));
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) : CRT(common_output_divisor)
{
_openGL_output_builder = std::unique_ptr<OpenGLOutputBuilder>(new OpenGLOutputBuilder(buffer_depth));
set_new_display_type(cycles_per_line, displayType);
}
#pragma mark - Sync loop
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{
return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
}
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{
return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
}
#define output_x1() (*(uint16_t *)&next_run[OutputVertexOffsetOfHorizontal + 0])
#define output_x2() (*(uint16_t *)&next_run[OutputVertexOffsetOfHorizontal + 2])
#define output_position_y() (*(uint16_t *)&next_run[OutputVertexOffsetOfVertical + 0])
#define output_tex_y() (*(uint16_t *)&next_run[OutputVertexOffsetOfVertical + 2])
#define source_input_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 0])
#define source_input_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 2])
#define source_output_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 0])
#define source_output_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 2])
#define source_phase(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAndAmplitude + 0]
#define source_amplitude(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAndAmplitude + 1]
#define source_phase_time(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseTime])
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y)
{
number_of_cycles *= _time_multiplier;
bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data));
while(number_of_cycles) {
unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event;
Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
hsync_requested = false;
vsync_requested = false;
bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
uint8_t *next_run = nullptr;
if(is_output_segment && !_openGL_output_builder->composite_output_buffer_is_full())
{
next_run = _openGL_output_builder->get_next_source_run();
}
// Vertex output is arranged for triangle strips, as:
//
// 2 [4/5]
//
// [0/1] 3
if(next_run)
{
source_input_position_x(0) = tex_x;
source_input_position_y(0) = source_input_position_y(1) = tex_y;
source_output_position_x(0) = (uint16_t)_horizontal_flywheel->get_current_output_position();
source_output_position_y(0) = source_output_position_y(1) = _openGL_output_builder->get_composite_output_y();
source_phase(0) = source_phase(1) = _colour_burst_phase;
source_amplitude(0) = source_amplitude(1) = _colour_burst_amplitude;
source_phase_time(0) = source_phase_time(1) = _colour_burst_time;
}
// decrement the number of cycles left to run for and increment the
// horizontal counter appropriately
number_of_cycles -= next_run_length;
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if(vsync_charging)
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0);
// react to the incoming event...
_horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
_vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
if(next_run)
{
// if this is a data run then advance the buffer pointer
if(type == Scan::Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider);
source_input_position_x(1) = tex_x;
source_output_position_x(1) = (uint16_t)_horizontal_flywheel->get_current_output_position();
_openGL_output_builder->complete_source_run();
}
// if this is horizontal retrace then advance the output line counter and bookend an output run
Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None;
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event;
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event;
bool needs_endpoint =
(honoured_event == Flywheel::SyncEvent::StartRetrace && _is_writing_composite_run) ||
(honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
if(needs_endpoint)
{
if(
_is_writing_composite_run == _did_start_run &&
_openGL_output_builder->composite_output_run_has_room_for_vertex() &&
!_openGL_output_builder->composite_output_buffer_is_full())
{
uint8_t *next_run = _openGL_output_builder->get_next_output_run();
if(next_run)
{
if(_did_start_run)
{
output_x1() = (uint16_t)_horizontal_flywheel->get_current_output_position();
output_position_y() = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
output_tex_y() = _openGL_output_builder->get_composite_output_y();
}
else
{
output_x2() = (uint16_t)_horizontal_flywheel->get_current_output_position();
_openGL_output_builder->complete_output_run();
}
_did_start_run ^= true;
}
}
_is_writing_composite_run ^= true;
}
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace)
{
_openGL_output_builder->increment_composite_output_y();
}
// if this is vertical retrace then adcance a field
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace)
{
if(_delegate)
{
_frames_since_last_delegate_call++;
if(_frames_since_last_delegate_call == 100)
{
_delegate->crt_did_end_batch_of_frames(this, _frames_since_last_delegate_call, _vertical_flywheel->get_and_reset_number_of_surprises());
_frames_since_last_delegate_call = 0;
}
}
}
}
}
#undef output_x1
#undef output_x2
#undef output_position_y
#undef output_tex_y
#undef input_input_position_x
#undef input_input_position_y
#undef input_output_position_x
#undef input_output_position_y
#undef input_phase
#undef input_amplitude
#undef input_phase_age
#pragma mark - stream feeding methods
void CRT::output_scan(const Scan *const scan)
{
const bool this_is_sync = (scan->type == Scan::Type::Sync);
const bool is_trailing_edge = (_is_receiving_sync && !this_is_sync);
const bool is_leading_edge = (!_is_receiving_sync && this_is_sync);
_is_receiving_sync = this_is_sync;
// This introduces a blackout period close to the expected vertical sync point in which horizontal syncs are not
// recognised, effectively causing the horizontal flywheel to freewheel during that period. This attempts to seek
// the problem that vertical sync otherwise often starts halfway through a scanline, which confuses the horizontal
// flywheel. I'm currently unclear whether this is an accurate solution to this problem.
const bool hsync_requested = is_leading_edge && !_vertical_flywheel->is_near_expected_sync();
const bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold);
// simplified colour burst logic: if it's within the back porch we'll take it
if(scan->type == Scan::Type::ColourBurst)
{
if(_horizontal_flywheel->get_current_time() < (_horizontal_flywheel->get_standard_period() * 12) >> 6)
{
_colour_burst_time = (uint16_t)_horizontal_flywheel->get_current_time();
_colour_burst_phase = scan->phase;
_colour_burst_amplitude = scan->amplitude;
}
}
// TODO: inspect raw data for potential colour burst if required
_sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0;
advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y);
}
/*
These all merely channel into advance_cycles, supplying appropriate arguments
*/
void CRT::output_sync(unsigned int number_of_cycles)
{
_openGL_output_builder->lock_output();
Scan scan{
.type = Scan::Type::Sync,
.number_of_cycles = number_of_cycles
};
output_scan(&scan);
_openGL_output_builder->unlock_output();
}
void CRT::output_blank(unsigned int number_of_cycles)
{
_openGL_output_builder->lock_output();
Scan scan {
.type = Scan::Type::Blank,
.number_of_cycles = number_of_cycles
};
output_scan(&scan);
_openGL_output_builder->unlock_output();
}
void CRT::output_level(unsigned int number_of_cycles)
{
_openGL_output_builder->lock_output();
if(!_openGL_output_builder->input_buffer_is_full())
{
Scan scan {
.type = Scan::Type::Level,
.number_of_cycles = number_of_cycles,
.tex_x = _openGL_output_builder->get_last_write_x_posititon(),
.tex_y = _openGL_output_builder->get_last_write_y_posititon()
};
output_scan(&scan);
}
else
{
Scan scan {
.type = Scan::Type::Blank,
.number_of_cycles = number_of_cycles
};
output_scan(&scan);
}
_openGL_output_builder->unlock_output();
}
void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude)
{
_openGL_output_builder->lock_output();
Scan scan {
.type = Scan::Type::ColourBurst,
.number_of_cycles = number_of_cycles,
.phase = phase,
.amplitude = amplitude
};
output_scan(&scan);
_openGL_output_builder->unlock_output();
}
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
{
_openGL_output_builder->lock_output();
if(!_openGL_output_builder->input_buffer_is_full())
{
_openGL_output_builder->reduce_previous_allocation_to(number_of_cycles / source_divider);
Scan scan {
.type = Scan::Type::Data,
.number_of_cycles = number_of_cycles,
.tex_x = _openGL_output_builder->get_last_write_x_posititon(),
.tex_y = _openGL_output_builder->get_last_write_y_posititon(),
.source_divider = source_divider
};
output_scan(&scan);
}
else
{
Scan scan {
.type = Scan::Type::Blank,
.number_of_cycles = number_of_cycles
};
output_scan(&scan);
}
_openGL_output_builder->unlock_output();
}
Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio)
{
first_cycle_after_sync *= _time_multiplier;
number_of_cycles *= _time_multiplier;
number_of_lines++;
// determine prima facie x extent
unsigned int horizontal_period = _horizontal_flywheel->get_standard_period();
unsigned int horizontal_scan_period = _horizontal_flywheel->get_scan_period();
unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period;
float start_x = (float)((unsigned)first_cycle_after_sync - horizontal_retrace_period) / (float)horizontal_scan_period;
float width = (float)number_of_cycles / (float)horizontal_scan_period;
// determine prima facie y extent
unsigned int vertical_period = _vertical_flywheel->get_standard_period();
unsigned int vertical_scan_period = _vertical_flywheel->get_scan_period();
unsigned int vertical_retrace_period = vertical_period - vertical_scan_period;
float start_y = (float)(((unsigned)first_line_after_sync * horizontal_period) - vertical_retrace_period) / (float)vertical_scan_period;
float height = (float)((unsigned)number_of_lines * horizontal_period) / vertical_scan_period;
// adjust to ensure aspect ratio is correct
float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f);
float ideal_width = height * adjusted_aspect_ratio;
if(ideal_width > width)
{
start_x -= (ideal_width - width) * 0.5f;
width = ideal_width;
}
else
{
float ideal_height = width / adjusted_aspect_ratio;
start_y -= (ideal_height - height) * 0.5f;
height = ideal_height;
}
return Rect(start_x, start_y, width, height);
}