mirror of
				https://github.com/TomHarte/CLK.git
				synced 2025-11-04 00:16:26 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			95 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//
 | 
						|
//  TimedEventLoop.cpp
 | 
						|
//  Clock Signal
 | 
						|
//
 | 
						|
//  Created by Thomas Harte on 29/07/2016.
 | 
						|
//  Copyright 2016 Thomas Harte. All rights reserved.
 | 
						|
//
 | 
						|
 | 
						|
#include "TimedEventLoop.hpp"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
using namespace Storage;
 | 
						|
 | 
						|
TimedEventLoop::TimedEventLoop(Cycles::IntType input_clock_rate) :
 | 
						|
	input_clock_rate_(input_clock_rate) {}
 | 
						|
 | 
						|
void TimedEventLoop::run_for(const Cycles cycles) {
 | 
						|
	auto remaining_cycles = cycles.as_integral();
 | 
						|
#ifndef NDEBUG
 | 
						|
	decltype(remaining_cycles) cycles_advanced = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
	while(cycles_until_event_ <= remaining_cycles) {
 | 
						|
#ifndef NDEBUG
 | 
						|
		cycles_advanced += cycles_until_event_;
 | 
						|
#endif
 | 
						|
		advance(cycles_until_event_);
 | 
						|
		remaining_cycles -= cycles_until_event_;
 | 
						|
		cycles_until_event_ = 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
		++event_count_;
 | 
						|
#endif
 | 
						|
		process_next_event();
 | 
						|
	}
 | 
						|
 | 
						|
	if(remaining_cycles) {
 | 
						|
		cycles_until_event_ -= remaining_cycles;
 | 
						|
#ifndef NDEBUG
 | 
						|
		cycles_advanced += remaining_cycles;
 | 
						|
#endif
 | 
						|
		advance(remaining_cycles);
 | 
						|
	}
 | 
						|
 | 
						|
	assert(cycles_advanced == cycles.as_integral());
 | 
						|
	assert(cycles_until_event_ > 0);
 | 
						|
}
 | 
						|
 | 
						|
Cycles::IntType TimedEventLoop::get_cycles_until_next_event() const {
 | 
						|
	return std::max(cycles_until_event_, Cycles::IntType(0));
 | 
						|
}
 | 
						|
 | 
						|
Cycles::IntType TimedEventLoop::get_input_clock_rate() const {
 | 
						|
	return input_clock_rate_;
 | 
						|
}
 | 
						|
 | 
						|
void TimedEventLoop::reset_timer() {
 | 
						|
	subcycles_until_event_ = 0.0;
 | 
						|
	cycles_until_event_ = 0;
 | 
						|
}
 | 
						|
 | 
						|
void TimedEventLoop::jump_to_next_event() {
 | 
						|
	reset_timer();
 | 
						|
#ifndef NDEBUG
 | 
						|
	++event_count_;
 | 
						|
#endif
 | 
						|
	process_next_event();
 | 
						|
}
 | 
						|
 | 
						|
void TimedEventLoop::set_next_event_time_interval(Time interval) {
 | 
						|
	set_next_event_time_interval(interval.get<float>());
 | 
						|
}
 | 
						|
 | 
						|
void TimedEventLoop::set_next_event_time_interval(float interval) {
 | 
						|
	// Calculate [interval]*[input clock rate] + [subcycles until this event]
 | 
						|
	const float float_interval = interval * float(input_clock_rate_) + subcycles_until_event_;
 | 
						|
 | 
						|
	// This event will fire in the integral number of cycles from now, putting us at the remainder
 | 
						|
	// number of subcycles.
 | 
						|
	const Cycles::IntType addition = Cycles::IntType(float_interval);
 | 
						|
	cycles_until_event_ += addition;
 | 
						|
	subcycles_until_event_ = fmodf(float_interval, 1.0f);
 | 
						|
 | 
						|
	assert(cycles_until_event_ >= 0);
 | 
						|
	assert(subcycles_until_event_ >= 0.0f);
 | 
						|
}
 | 
						|
 | 
						|
Time TimedEventLoop::get_time_into_next_event() {
 | 
						|
	// TODO: calculate, presumably as [length of interval] - ([cycles left] + [subcycles left])
 | 
						|
	Time zero;
 | 
						|
	return zero;
 | 
						|
}
 |