1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-23 06:28:59 +00:00
CLK/Outputs/OpenGL/ScanTargetGLSLFragments.cpp

784 lines
29 KiB
C++

//
// ScanTargetVertexArrayAttributs.cpp
// Clock Signal
//
// Created by Thomas Harte on 11/11/2018.
// Copyright © 2018 Thomas Harte. All rights reserved.
//
#include "ScanTarget.hpp"
using namespace Outputs::Display::OpenGL;
std::string ScanTarget::glsl_globals(ShaderType type) {
switch(type) {
case ShaderType::InputScan:
case ShaderType::ProcessedScan:
return
"#version 150\n"
"uniform vec2 scale;"
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;"
"uniform float rowHeight;"
"uniform float processingWidth;"
"in vec2 startPoint;"
"in float startDataX;"
"in float startCompositeAngle;"
"in float startClock;"
"in vec2 endPoint;"
"in float endDataX;"
"in float endCompositeAngle;"
"in float endClock;"
"in float dataY;"
"in float lineY;"
"in float compositeAmplitude;";
case ShaderType::Line:
return "";
}
}
std::vector<Shader::AttributeBinding> ScanTarget::attribute_bindings(ShaderType type) {
switch(type) {
case ShaderType::InputScan:
case ShaderType::ProcessedScan:
return {
{"startPoint", 0},
{"startDataX", 1},
{"startCompositeAngle", 2},
{"startClock", 3},
{"endPoint", 4},
{"endDataX", 5},
{"endCompositeAngle", 6},
{"endClock", 7},
{"dataY", 8},
{"lineY", 9},
{"compositeAmplitude", 10},
};
case ShaderType::Line:
return {
{"startPoint", 0},
{"endPoint", 1},
{"startClock", 2},
{"endClock", 3},
{"lineY", 4},
{"lineCompositeAmplitude", 5},
{"startCompositeAngle", 6},
{"endCompositeAngle", 7},
};
}
}
std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
switch(type) {
case ShaderType::InputScan:
case ShaderType::ProcessedScan: {
std::string result;
if(type == ShaderType::InputScan) {
result +=
"out vec2 textureCoordinate;"
"uniform usampler2D textureName;";
} else {
result +=
"out vec2 textureCoordinates[15];"
"out vec2 chromaCoordinates[2];"
"uniform sampler2D textureName;"
"uniform float chromaOffset;"
"uniform float edgeExpansion;";
}
result +=
"out float compositeAngle;"
"out float oneOverCompositeAmplitude;"
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
"oneOverCompositeAmplitude = mix(0.0, 255.0 / compositeAmplitude, step(0.01, compositeAmplitude));";
if(type == ShaderType::InputScan) {
result +=
"textureCoordinate = vec2(mix(startDataX, endDataX, lateral), dataY + 0.5) / textureSize(textureName, 0);"
"vec2 eyePosition = vec2(mix(startClock, endClock, lateral), lineY + longitudinal) / vec2(2048.0, 2048.0);";
} else {
result +=
"vec2 sourcePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + 0.5);"
"vec2 eyePosition = (sourcePosition + vec2(0.0, longitudinal - 0.5)) / vec2(scale.x, 2048.0);"
"sourcePosition /= vec2(scale.x, 2048.0);"
// "vec2 expansion = vec2(edgeExpansion, 0.0) / textureSize(textureName, 0);"
// "eyePosition = eyePosition + expansion;"
// "sourcePosition = sourcePosition + expansion;"
"textureCoordinates[0] = sourcePosition + vec2(-7.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[1] = sourcePosition + vec2(-6.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[2] = sourcePosition + vec2(-5.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[3] = sourcePosition + vec2(-4.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[4] = sourcePosition + vec2(-3.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[5] = sourcePosition + vec2(-2.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[6] = sourcePosition + vec2(-1.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[7] = sourcePosition;"
"textureCoordinates[8] = sourcePosition + vec2(1.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[9] = sourcePosition + vec2(2.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[10] = sourcePosition + vec2(3.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[11] = sourcePosition + vec2(4.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[12] = sourcePosition + vec2(5.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[13] = sourcePosition + vec2(6.0, 0.0) / textureSize(textureName, 0);"
"textureCoordinates[14] = sourcePosition + vec2(7.0, 0.0) / textureSize(textureName, 0);"
"chromaCoordinates[0] = sourcePosition + vec2(chromaOffset, 0.0);"
"chromaCoordinates[1] = sourcePosition - vec2(chromaOffset, 0.0);"
"eyePosition = eyePosition;";
}
return result +
"gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);"
"}";
}
case ShaderType::Line:
return
"out vec2 textureCoordinates[4];"
"out float compositeAngle;"
"out float oneOverCompositeAmplitude;"
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"textureCoordinates[0] = vec2(mix(startClock, endClock, lateral), lineY + 0.5) / textureSize(textureName, 0);"
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
"oneOverCompositeAmplitude = mix(0.0, 255.0 / compositeAmplitude, step(0.01, compositeAmplitude));"
"vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;"
"vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);"
"gl_Position = vec4(eyePosition, 0.0, 1.0);"
"}";
}
}
void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
switch(type) {
case ShaderType::InputScan:
case ShaderType::ProcessedScan:
for(int c = 0; c < 2; ++c) {
const std::string prefix = c ? "end" : "start";
target.enable_vertex_attribute_with_pointer(
prefix + "Point",
2, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].x)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "DataX",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].data_offset)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "CompositeAngle",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].composite_angle)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "Clock",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.end_points[c].cycles_since_end_of_horizontal_retrace)),
1);
}
target.enable_vertex_attribute_with_pointer(
"dataY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, data_y)),
1);
target.enable_vertex_attribute_with_pointer(
"lineY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, line)),
1);
target.enable_vertex_attribute_with_pointer(
"compositeAmplitude",
1, GL_UNSIGNED_BYTE, GL_FALSE,
sizeof(Scan),
reinterpret_cast<void *>(offsetof(Scan, scan.composite_amplitude)),
1);
break;
case ShaderType::Line:
for(int c = 0; c < 2; ++c) {
const std::string prefix = c ? "end" : "start";
target.enable_vertex_attribute_with_pointer(
prefix + "Point",
2, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, end_points[c].x)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "Clock",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, end_points[c].cycles_since_end_of_horizontal_retrace)),
1);
target.enable_vertex_attribute_with_pointer(
prefix + "CompositeAngle",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, end_points[c].composite_angle)),
1);
}
target.enable_vertex_attribute_with_pointer(
"lineY",
1, GL_UNSIGNED_SHORT, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, line)),
1);
target.enable_vertex_attribute_with_pointer(
"lineCompositeAmplitude",
1, GL_UNSIGNED_BYTE, GL_FALSE,
sizeof(Line),
reinterpret_cast<void *>(offsetof(Line, composite_amplitude)),
1);
break;
}
}
std::unique_ptr<Shader> ScanTarget::composition_shader(InputDataType input_data_type) {
/* std::string fragment_shader =
"#version 150\n"
"out vec3 fragColour;"
"in vec2 textureCoordinate;"
"in float compositeAngle;"
"in float oneOverCompositeAmplitude;"
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;"
"uniform usampler2D textureName;"
"uniform float phaseOffset;"
"void main(void) {";
DisplayType computed_display_type;
switch(input_data_type) {
case InputDataType::Luminance1:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrr;";
if(computed_display_type != display_type) {
fragment_shader += "fragColour = clamp(fragColour, 0.0, 1.0);";
}
break;
case InputDataType::Luminance8:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = vec3(texture(textureName, textureCoordinate).r / 255.0);";
break;
case InputDataType::PhaseLinkedLuminance8:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader +=
"uint iPhase = uint((compositeAngle * 2.0 / 3.141592654) + phaseOffset*4.0) & 3u;"
"fragColour = vec3(texture(textureName, textureCoordinate)[iPhase] / 255.0);";
break;
case InputDataType::Luminance8Phase8:
computed_display_type = DisplayType::SVideo;
fragment_shader +=
"vec2 yc = texture(textureName, textureCoordinate).rg / vec2(255.0);"
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
"float rawChroma = step(yc.y, 0.75) * cos(compositeAngle + phaseOffset);"
"fragColour = vec3(yc.x, 0.5 + rawChroma*0.5, 0.0);";
break;
case InputDataType::Red1Green1Blue1:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = uvec3(textureValue) & uvec3(4u, 2u, 1u);";
if(computed_display_type != display_type) {
fragment_shader += "fragColour = clamp(fragColour, 0.0, 1.0);";
}
break;
case InputDataType::Red2Green2Blue2:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0;";
break;
case InputDataType::Red4Green4Blue4:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uvec2 textureValue = texture(textureName, textureCoordinate).rg;"
"fragColour = vec3(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0);";
break;
case InputDataType::Red8Green8Blue8:
computed_display_type = DisplayType::RGB;
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);";
break;
}*/
// If the input type is RGB but the output type isn't then
// there'll definitely be an RGB to SVideo step.
// if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) {
// fragment_shader +=
// "vec3 composite_colour = rgbToLumaChroma * fragColour;"
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
// "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);";
// }
// If the output type is SVideo, throw in an attempt to separate the two chrominance
// channels here.
// if(display_type == DisplayType::SVideo) {
// if(computed_display_type != DisplayType::RGB) {
// fragment_shader +=
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));";
// }
// fragment_shader +=
// "vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);"
// "fragColour = vec3(fragColour.x, chroma);";
// }
// Add an SVideo to composite step if necessary.
// if(
// (display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) &&
// computed_display_type != DisplayType::CompositeMonochrome
// ) {
// fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));";
// }
std::string fragment_shader =
"#version 150\n"
"out vec4 fragColour;"
"in vec2 textureCoordinate;"
"uniform usampler2D textureName;"
"void main(void) {";
switch(input_data_type) {
case InputDataType::Luminance1:
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrrr;";
break;
case InputDataType::Luminance8:
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrrr / vec4(255.0);";
break;
case InputDataType::PhaseLinkedLuminance8:
case InputDataType::Luminance8Phase8:
case InputDataType::Red8Green8Blue8:
fragment_shader += "fragColour = texture(textureName, textureCoordinate) / vec4(255.0);";
break;
case InputDataType::Red1Green1Blue1:
fragment_shader += "fragColour = vec4(texture(textureName, textureCoordinate).rrr & uvec3(4u, 2u, 1u), 1.0);";
break;
case InputDataType::Red2Green2Blue2:
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec4(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u), 3.0) / 3.0;";
break;
case InputDataType::Red4Green4Blue4:
fragment_shader +=
"uvec2 textureValue = texture(textureName, textureCoordinate).rg;"
"fragColour = vec4(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0, 1.0);";
break;
}
return std::unique_ptr<Shader>(new Shader(
glsl_globals(ShaderType::InputScan) + glsl_default_vertex_shader(ShaderType::InputScan),
fragment_shader + "}",
attribute_bindings(ShaderType::InputScan)
));
}
std::unique_ptr<Shader> ScanTarget::conversion_shader(InputDataType input_data_type, DisplayType display_type, ColourSpace colour_space) {
display_type = DisplayType::CompositeMonochrome; // Just a test.
// Compose a vertex shader. If the display type is RGB, generate just the proper
// geometry position, plus a solitary textureCoordinate.
//
// If the display type is anything other than RGB, also produce composite
// angle and 1/composite amplitude as outputs.
//
// If the display type is composite colour, generate four textureCoordinates,
// spanning a range of -135, -45, +45, +135 degrees.
//
// If the display type is S-Video, generate three textureCoordinates, at
// -45, 0, +45.
std::string vertex_shader =
"#version 150\n"
"uniform vec2 scale;"
"uniform float rowHeight;"
"uniform float processingWidth;"
"in vec2 startPoint;"
"in vec2 endPoint;"
"in float startClock;"
"in float startCompositeAngle;"
"in float endClock;"
"in float endCompositeAngle;"
"in float lineY;"
"in float lineCompositeAmplitude;"
"uniform sampler2D textureName;"
"uniform vec2 origin;"
"uniform vec2 size;";
std::string fragment_shader =
"#version 150\n"
"uniform sampler2D textureName;"
"out vec4 fragColour;";
if(display_type != DisplayType::RGB) {
vertex_shader +=
"out float compositeAngle;"
"out float compositeAmplitude;"
"out float oneOverCompositeAmplitude;";
fragment_shader +=
"in float compositeAngle;"
"in float compositeAmplitude;"
"in float oneOverCompositeAmplitude;";
}
switch(display_type){
case DisplayType::RGB:
case DisplayType::CompositeMonochrome:
vertex_shader += "out vec2 textureCoordinate;";
fragment_shader += "in vec2 textureCoordinate;";
break;
case DisplayType::CompositeColour:
vertex_shader += "out vec2 textureCoordinates[4];";
fragment_shader += "in vec2 textureCoordinates[4];";
break;
case DisplayType::SVideo:
vertex_shader += "out vec2 textureCoordinates[3];";
fragment_shader += "in vec2 textureCoordinates[3];";
break;
}
// Add the code to generate a proper output position; this applies to all display types.
vertex_shader +=
"void main(void) {"
"float lateral = float(gl_VertexID & 1);"
"float longitudinal = float((gl_VertexID & 2) >> 1);"
"vec2 centrePoint = mix(startPoint, endPoint, lateral) / scale;"
"vec2 height = normalize(endPoint - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);"
"gl_Position = vec4(eyePosition, 0.0, 1.0);";
// For everything other than RGB, calculate the two composite outputs.
if(display_type != DisplayType::RGB) {
vertex_shader +=
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
"compositeAmplitude = lineCompositeAmplitude / 255.0;"
"oneOverCompositeAmplitude = mix(0.0, 255.0 / lineCompositeAmplitude, step(0.01, lineCompositeAmplitude));";
}
// For RGB and monochrome composite, generate the single texture coordinate; otherwise generate either three
// or four depending on the type of decoding to apply.
switch(display_type){
case DisplayType::RGB:
case DisplayType::CompositeMonochrome:
vertex_shader +=
"textureCoordinate = vec2(mix(startClock, endClock, lateral), lineY + 0.5) / textureSize(textureName, 0);";
break;
case DisplayType::CompositeColour:
// TODO
break;
case DisplayType::SVideo:
// TODO
break;
}
vertex_shader += "}";
// Compose a fragment shader.
//
// For an RGB display ... [TODO]
if(display_type != DisplayType::RGB) {
fragment_shader +=
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;";
}
fragment_shader +=
"void main(void) {"
"vec3 fragColour3;";
switch(display_type) {
case DisplayType::RGB:
// Easy, just copy across.
fragment_shader += "fragColour3 = texture(textureName, textureCoordinate).rgb;";
break;
case DisplayType::SVideo:
// TODO
break;
case DisplayType::CompositeColour:
// TODO
break;
case DisplayType::CompositeMonochrome: {
switch(input_data_type) {
case InputDataType::Luminance1:
case InputDataType::Luminance8:
// Easy, just copy across.
fragment_shader += "fragColour3 = texture(textureName, textureCoordinate).rgb;";
break;
case InputDataType::PhaseLinkedLuminance8:
fragment_shader +=
"uint iPhase = uint((compositeAngle * 2.0 / 3.141592654) ) & 3u;" // + phaseOffset*4.0
"fragColour3 = vec3(texture(textureName, textureCoordinate)[iPhase]);";
break;
case InputDataType::Luminance8Phase8:
fragment_shader +=
"vec2 yc = texture(textureName, textureCoordinate).rg;"
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
"float rawChroma = step(yc.y, 0.75) * cos(compositeAngle + phaseOffset);"
"float level = mix(yc.x, yc.y * rawChroma, compositeAmplitude);"
"fragColour3 = vec3(level);";
break;
case InputDataType::Red1Green1Blue1:
case InputDataType::Red2Green2Blue2:
case InputDataType::Red4Green4Blue4:
case InputDataType::Red8Green8Blue8:
fragment_shader +=
"vec3 colour = rgbToLumaChroma * texture(textureName, textureCoordinate).rgb;"
"vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
"float level = mix(colour.r, dot(quadrature, colour.gb), compositeAmplitude);"
"fragColour3 = vec3(level);";
break;
}
} break;
}
fragment_shader +=
"fragColour = vec4(fragColour3, 0.64);"
"}";
// TODO gamma and range corrections.
const auto shader = new Shader(
vertex_shader,
fragment_shader,
attribute_bindings(ShaderType::Line)
);
// If this isn't an RGB or composite colour shader, set the proper colour space.
if(display_type != DisplayType::RGB) {
switch(colour_space) {
case ColourSpace::YIQ: {
const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB);
shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ);
} break;
case ColourSpace::YUV: {
const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB);
shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV);
} break;
}
}
return std::unique_ptr<Shader>(shader);
}
//
//SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) {
// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
// return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff);
//}
//
//std::unique_ptr<Shader> ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
// /*
// Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that
// from the original to get chrominance.
//
// (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth),
// there'll be at least four samples per colour clock and in practice at most just a shade more than 9.
// */
// auto shader = std::unique_ptr<Shader>(new Shader(
// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
// "#version 150\n"
//
// "in vec2 textureCoordinates[15];"
// "in vec2 chromaCoordinates[2];"
// "in float compositeAngle;"
//
//// "uniform vec4 chromaWeights[4];"
//// "uniform vec4 lumaWeights[4];"
// "uniform sampler2D textureName;"
// "uniform mat3 lumaChromaToRGB;"
//
// "out vec3 fragColour;"
// "void main() {"
// "vec2 angles = vec2(compositeAngle - 1.570795827, compositeAngle + 1.570795827);"
//
// "vec2 sines = sin(angles) * vec2(0.5) + vec2(0.5);"
// "vec2 coses = cos(angles);"
// "float denominator = sines.y * coses.x - sines.x * coses.y;"
//
// "vec2 samples = vec2(texture(textureName, chromaCoordinates[0]).g, texture(textureName, chromaCoordinates[1]).g);"
//
// "float channel1 = (samples.x * sines.x - samples.y * sines.y) / denominator;"
// "float channel2 = (samples.x * coses.x - samples.y * coses.y) / denominator;"
//
//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).r, channel1, channel2);"
// "fragColour = vec3(sines.x + sines.y, 0.0, 0.0);"
// //, 0.0);"
//
//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).g, 0.0, 0.0);"
//// "fragColour = vec3(0.5);"
///* "vec3 samples[15] = vec3[15]("
// "texture(textureName, textureCoordinates[0]).rgb,"
// "texture(textureName, textureCoordinates[1]).rgb,"
// "texture(textureName, textureCoordinates[2]).rgb,"
// "texture(textureName, textureCoordinates[3]).rgb,"
// "texture(textureName, textureCoordinates[4]).rgb,"
// "texture(textureName, textureCoordinates[5]).rgb,"
// "texture(textureName, textureCoordinates[6]).rgb,"
// "texture(textureName, textureCoordinates[7]).rgb,"
// "texture(textureName, textureCoordinates[8]).rgb,"
// "texture(textureName, textureCoordinates[9]).rgb,"
// "texture(textureName, textureCoordinates[10]).rgb,"
// "texture(textureName, textureCoordinates[11]).rgb,"
// "texture(textureName, textureCoordinates[12]).rgb,"
// "texture(textureName, textureCoordinates[13]).rgb,"
// "texture(textureName, textureCoordinates[14]).rgb"
// ");"
// "vec4 samples0[4] = vec4[4]("
// "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r),"
// "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r),"
// "vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r),"
// "vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)"
// ");"
// "vec4 samples1[4] = vec4[4]("
// "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g),"
// "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g),"
// "vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g),"
// "vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)"
// ");"
// "vec4 samples2[4] = vec4[4]("
// "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b),"
// "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b),"
// "vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b),"
// "vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)"
// ");"
// "float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);"
// "float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);"
// "float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);"
// "vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);"
// "fragColour = lumaChromaToRGB * vec3(channel0, chroma);"*/
// "}",
// attribute_bindings(ShaderType::ProcessedScan)
// ));
//
// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
// const float chroma_offset = 0.25f / cycles_per_expanded_line;
// shader->set_uniform("chromaOffset", chroma_offset);
//
//// auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients();
//// chroma_coefficients.push_back(0.0f);
//// shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data());
////
//// auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients();
//// luma_coefficients.push_back(0.0f);
//// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
//
// shader->set_uniform("edgeExpansion", 20);
//
// return shader;
//}
//
//std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
// auto shader = std::unique_ptr<Shader>(new Shader(
// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
// "#version 150\n"
//
// "in vec2 textureCoordinates[15];"
// "in float compositeAngle;"
// "in float oneOverCompositeAmplitude;"
//
// "uniform vec4 lumaWeights[4];"
// "uniform sampler2D textureName;"
//
// "out vec3 fragColour;"
// "void main() {"
// "vec4 samples[4] = vec4[4]("
// "vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r),"
// "vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r),"
// "vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r),"
// "vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)"
// ");"
// "float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);"
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
// "vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;"
// "fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));"
// "}",
// attribute_bindings(ShaderType::ProcessedScan)
// ));
//
// auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f);
// auto luma_coefficients = luma_low.get_coefficients();
// luma_coefficients.push_back(0.0f);
// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
//
// shader->set_uniform("edgeExpansion", 10);
//
// return shader;
//}
//