1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-01 10:05:55 +00:00
CLK/Machines/Electron/Electron.cpp

1119 lines
35 KiB
C++

//
// Electron.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/01/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "Electron.hpp"
#include "TapeUEF.hpp"
#include <algorithm>
#include <cassert>
using namespace Electron;
namespace {
static const unsigned int cycles_per_line = 128;
static const unsigned int lines_per_frame = 625;
static const unsigned int cycles_per_frame = lines_per_frame * cycles_per_line;
static const unsigned int crt_cycles_multiplier = 8;
static const unsigned int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line;
static const unsigned int field_divider_line = 312; // i.e. the line, simultaneous with which, the first field's sync ends. So if
// the first line with pixels in field 1 is the 20th in the frame, the first line
// with pixels in field 2 will be 20+field_divider_line
static const unsigned int first_graphics_line = 31;
static const unsigned int first_graphics_cycle = 33;
static const unsigned int display_end_interrupt_line = 256;
static const unsigned int real_time_clock_interrupt_1 = 16704;
static const unsigned int real_time_clock_interrupt_2 = 56704;
static const unsigned int clock_rate_audio_divider = 8;
}
#define graphics_line(v) ((((v) >> 7) - first_graphics_line + field_divider_line) % field_divider_line)
#define graphics_column(v) ((((v) & 127) - first_graphics_cycle + 128) & 127)
Machine::Machine() :
_interrupt_control(0),
_interrupt_status(Interrupt::PowerOnReset),
_frameCycles(0),
_displayOutputPosition(0),
_audioOutputPosition(0),
_current_pixel_line(-1),
_use_fast_tape_hack(false),
_crt(nullptr),
_phase(0)
{
memset(_key_states, 0, sizeof(_key_states));
memset(_palette, 0xf, sizeof(_palette));
for(int c = 0; c < 16; c++)
memset(_roms[c], 0xff, 16384);
_tape.set_delegate(this);
}
void Machine::setup_output(float aspect_ratio)
{
_crt.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
_crt->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
"texValue >>= 4 - (int(icoordinate.x * 8) & 4);"
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
"}");
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
_crt->set_visible_area(_crt->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
// The maximum output frequency is 62500Hz and all other permitted output frequencies are integral divisions of that;
// however setting the speaker on or off can happen on any 2Mhz cycle, and probably (?) takes effect immediately. So
// run the speaker at a 2000000Hz input rate, at least for the time being.
_speaker.set_input_rate(2000000 / clock_rate_audio_divider);
}
void Machine::close_output()
{
_crt = nullptr;
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
{
unsigned int cycles = 1;
if(address < 0x8000)
{
if(isReadOperation(operation))
{
*value = _ram[address];
}
else
{
if(
(
((_frameCycles >= first_graphics_line * cycles_per_line) && (_frameCycles < (first_graphics_line + 256) * cycles_per_line)) ||
((_frameCycles >= (first_graphics_line + field_divider_line) * cycles_per_line) && (_frameCycles < (first_graphics_line + 256 + field_divider_line) * cycles_per_line))
)
)
update_display();
_ram[address] = *value;
}
// for the entire frame, RAM is accessible only on odd cycles; in modes below 4
// it's also accessible only outside of the pixel regions
cycles += 1 + (_frameCycles&1);
if(_screen_mode < 4)
{
const int current_line = graphics_line(_frameCycles + (_frameCycles&1));
const int current_column = graphics_column(_frameCycles + (_frameCycles&1));
if(current_line < 256 && current_column < 80 && !_isBlankLine)
cycles += (unsigned int)(80 - current_column);
}
}
else
{
if(address >= 0xc000)
{
if((address & 0xff00) == 0xfe00)
{
switch(address&0xf)
{
case 0x0:
if(isReadOperation(operation))
{
*value = _interrupt_status;
_interrupt_status &= ~PowerOnReset;
}
else
{
_interrupt_control = (*value) & ~1;
evaluate_interrupts();
}
break;
case 0x1:
break;
case 0x2:
if(!isReadOperation(operation))
{
_startScreenAddress = (_startScreenAddress & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
if(!_startScreenAddress) _startScreenAddress |= 0x8000;
}
break;
case 0x3:
if(!isReadOperation(operation))
{
_startScreenAddress = (_startScreenAddress & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
if(!_startScreenAddress) _startScreenAddress |= 0x8000;
}
break;
case 0x4:
if(isReadOperation(operation))
{
*value = _tape.get_data_register();
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
}
else
{
_tape.set_data_register(*value);
_tape.clear_interrupts(Interrupt::TransmitDataEmpty);
}
break;
case 0x5:
if(!isReadOperation(operation))
{
const uint8_t interruptDisable = (*value)&0xf0;
if( interruptDisable )
{
if( interruptDisable&0x10 ) _interrupt_status &= ~Interrupt::DisplayEnd;
if( interruptDisable&0x20 ) _interrupt_status &= ~Interrupt::RealTimeClock;
if( interruptDisable&0x40 ) _interrupt_status &= ~Interrupt::HighToneDetect;
evaluate_interrupts();
// TODO: NMI
}
// latch the paged ROM in case external hardware is being emulated
_active_rom = (Electron::ROMSlot)(*value & 0xf);
// apply the ULA's test
if(*value & 0x08)
{
if(*value & 0x04)
{
_keyboard_is_active = false;
_basic_is_active = false;
}
else
{
_keyboard_is_active = !(*value & 0x02);
_basic_is_active = !_keyboard_is_active;
}
}
}
break;
case 0x6:
if(!isReadOperation(operation))
{
update_audio();
_speaker.set_divider(*value);
_tape.set_counter(*value);
}
break;
case 0x7:
if(!isReadOperation(operation))
{
// update screen mode
uint8_t new_screen_mode = ((*value) >> 3)&7;
if(new_screen_mode == 7) new_screen_mode = 4;
if(new_screen_mode != _screen_mode)
{
// printf("To mode %d, at %d cycles into field (%d)\n", new_screen_mode, _fieldCycles, _fieldCycles >> 7);
update_display();
_screen_mode = new_screen_mode;
switch(_screen_mode)
{
case 0: case 1: case 2: _screenModeBaseAddress = 0x3000; break;
case 3: _screenModeBaseAddress = 0x4000; break;
case 4: case 5: _screenModeBaseAddress = 0x5800; break;
case 6: _screenModeBaseAddress = 0x6000; break;
}
}
// update speaker mode
bool new_speaker_is_enabled = (*value & 6) == 2;
if(new_speaker_is_enabled != _speaker.get_is_enabled())
{
update_audio();
_speaker.set_is_enabled(new_speaker_is_enabled);
_tape.set_is_enabled(!new_speaker_is_enabled);
}
_tape.set_is_running(((*value)&0x40) ? true : false);
_tape.set_is_in_input_mode(((*value)&0x04) ? false : true);
// TODO: caps lock LED
}
break;
default:
{
if(!isReadOperation(operation))
{
update_display();
static const int registers[4][4] = {
{10, 8, 2, 0},
{14, 12, 6, 4},
{15, 13, 7, 5},
{11, 9, 3, 1},
};
const int index = (address >> 1)&3;
const uint8_t colour = ~(*value);
if(address&1)
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&3) | ((colour >> 1)&4);
_palette[registers[index][1]] = (_palette[registers[index][1]]&3) | ((colour >> 0)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&3) | ((colour << 1)&4);
_palette[registers[index][3]] = (_palette[registers[index][3]]&3) | ((colour << 2)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&5) | ((colour >> 4)&2);
_palette[registers[index][3]] = (_palette[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&6) | ((colour >> 7)&1);
_palette[registers[index][1]] = (_palette[registers[index][1]]&6) | ((colour >> 6)&1);
_palette[registers[index][2]] = (_palette[registers[index][2]]&6) | ((colour >> 5)&1);
_palette[registers[index][3]] = (_palette[registers[index][3]]&6) | ((colour >> 4)&1);
_palette[registers[index][0]] = (_palette[registers[index][0]]&5) | ((colour >> 2)&2);
_palette[registers[index][1]] = (_palette[registers[index][1]]&5) | ((colour >> 1)&2);
}
// regenerate all palette tables for now
#define pack(a, b) (uint8_t)((a << 4) | (b))
for(int byte = 0; byte < 256; byte++)
{
uint8_t *target = (uint8_t *)&_paletteTables.forty1bpp[byte];
target[0] = pack(_palette[(byte&0x80) >> 4], _palette[(byte&0x40) >> 3]);
target[1] = pack(_palette[(byte&0x20) >> 2], _palette[(byte&0x10) >> 1]);
target = (uint8_t *)&_paletteTables.eighty2bpp[byte];
target[0] = pack(_palette[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], _palette[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
target[1] = pack(_palette[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], _palette[((byte&0x10) >> 1) | ((byte&0x01) << 1)]);
target = (uint8_t *)&_paletteTables.eighty1bpp[byte];
target[0] = pack(_palette[(byte&0x80) >> 4], _palette[(byte&0x40) >> 3]);
target[1] = pack(_palette[(byte&0x20) >> 2], _palette[(byte&0x10) >> 1]);
target[2] = pack(_palette[(byte&0x08) >> 0], _palette[(byte&0x04) << 1]);
target[3] = pack(_palette[(byte&0x02) << 2], _palette[(byte&0x01) << 3]);
_paletteTables.forty2bpp[byte] = pack(_palette[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], _palette[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
_paletteTables.eighty4bpp[byte] = pack( _palette[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)],
_palette[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]);
}
#undef pack
}
}
break;
}
}
else
{
if(isReadOperation(operation))
{
if(
_use_fast_tape_hack &&
_tape.has_tape() &&
(operation == CPU6502::BusOperation::ReadOpcode) &&
(
(address == 0xf4e5) || (address == 0xf4e6) || // double NOPs at 0xf4e5, 0xf6de, 0xf6fa and 0xfa51
(address == 0xf6de) || (address == 0xf6df) || // act to disable the normal branch into tape-handling
(address == 0xf6fa) || (address == 0xf6fb) || // code, forcing the OS along the serially-accessed ROM
(address == 0xfa51) || (address == 0xfa52) || // pathway.
(address == 0xf0a8) // 0xf0a8 is from where a service call would normally be
// dispatched; we can check whether it would be call 14
// (i.e. read byte) and, if so, whether the OS was about to
// issue a read byte call to a ROM despite being the tape
// FS being selected. If so then this is a get byte that
// we should service synthetically. Put the byte into Y
// and set A to zero to report that action was taken, then
// allow the PC read to return an RTS.
)
)
{
uint8_t service_call = (uint8_t)get_value_of_register(CPU6502::Register::X);
if(address == 0xf0a8)
{
if(!_ram[0x247] && service_call == 14)
{
_tape.set_delegate(nullptr);
// TODO: handle tape wrap around.
int cycles_left_while_plausibly_in_data = 50;
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
while(1)
{
_tape.run_for_input_pulse();
cycles_left_while_plausibly_in_data--;
if(!cycles_left_while_plausibly_in_data) _fast_load_is_in_data = false;
if( (_tape.get_interrupt_status() & Interrupt::ReceiveDataFull) &&
(_fast_load_is_in_data || _tape.get_data_register() == 0x2a)
) break;
}
_tape.set_delegate(this);
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
_interrupt_status |= _tape.get_interrupt_status();
_fast_load_is_in_data = true;
set_value_of_register(CPU6502::Register::A, 0);
set_value_of_register(CPU6502::Register::Y, _tape.get_data_register());
*value = 0x60; // 0x60 is RTS
}
else
*value = _os[address & 16383];
}
else
*value = 0xea;
}
else
{
*value = _os[address & 16383];
}
}
}
}
else
{
if(isReadOperation(operation))
{
*value = _roms[_active_rom][address & 16383];
if(_keyboard_is_active)
{
*value &= 0xf0;
for(int address_line = 0; address_line < 14; address_line++)
{
if(!(address&(1 << address_line))) *value |= _key_states[address_line];
}
}
if(_basic_is_active)
{
*value &= _roms[ROMSlotBASIC][address & 16383];
}
}
}
}
// if(operation == CPU6502::BusOperation::ReadOpcode)
// {
// printf("%04x: %02x (%d)\n", address, *value, _fieldCycles);
// }
// const int end_of_field =
// if(_frameCycles < (256 + first_graphics_line) << 7))
const unsigned int pixel_line_clock = _frameCycles;// + 128 - first_graphics_cycle + 80;
const unsigned int line_before_cycle = graphics_line(pixel_line_clock);
const unsigned int line_after_cycle = graphics_line(pixel_line_clock + cycles);
// implicit assumption here: the number of 2Mhz cycles this bus operation will take
// is never longer than a line. On the Electron, it's a safe one.
if(line_before_cycle != line_after_cycle)
{
switch(line_before_cycle)
{
// case real_time_clock_interrupt_line: signal_interrupt(Interrupt::RealTimeClock); break;
// case real_time_clock_interrupt_line+1: clear_interrupt(Interrupt::RealTimeClock); break;
case display_end_interrupt_line: signal_interrupt(Interrupt::DisplayEnd); break;
// case display_end_interrupt_line+1: clear_interrupt(Interrupt::DisplayEnd); break;
}
}
if(
(pixel_line_clock < real_time_clock_interrupt_1 && pixel_line_clock + cycles >= real_time_clock_interrupt_1) ||
(pixel_line_clock < real_time_clock_interrupt_2 && pixel_line_clock + cycles >= real_time_clock_interrupt_2))
{
signal_interrupt(Interrupt::RealTimeClock);
}
_frameCycles += cycles;
if(!(_frameCycles&127)) _phase += 64;
// deal with frame wraparound by updating the two dependent subsystems
// as though the exact end of frame had been hit, then reset those
// and allow the frame cycle counter to assume its real value
if(_frameCycles >= cycles_per_frame)
{
unsigned int nextFrameCycles = _frameCycles - cycles_per_frame;
_frameCycles = cycles_per_frame;
update_display();
update_audio();
_displayOutputPosition = 0;
_audioOutputPosition = 0;
_frameCycles = nextFrameCycles;
}
if(!(_frameCycles&16383))
update_audio();
_tape.run_for_cycles(cycles);
if(_typer) _typer->update((int)cycles);
return cycles;
}
void Machine::synchronise()
{
update_display();
update_audio();
}
void Machine::set_tape(std::shared_ptr<Storage::Tape> tape)
{
_tape.set_tape(tape);
}
void Machine::set_rom(ROMSlot slot, size_t length, const uint8_t *data)
{
uint8_t *target = nullptr;
switch(slot)
{
case ROMSlotOS: target = _os; break;
default: target = _roms[slot]; break;
}
memcpy(target, data, std::min((size_t)16384, length));
}
inline void Machine::signal_interrupt(Electron::Interrupt interrupt)
{
_interrupt_status |= interrupt;
evaluate_interrupts();
}
inline void Machine::clear_interrupt(Electron::Interrupt interrupt)
{
_interrupt_status &= ~interrupt;
evaluate_interrupts();
}
void Machine::tape_did_change_interrupt_status(Tape *tape)
{
_interrupt_status = (_interrupt_status & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | _tape.get_interrupt_status();
evaluate_interrupts();
}
inline void Machine::evaluate_interrupts()
{
if(_interrupt_status & _interrupt_control)
{
_interrupt_status |= 1;
}
else
{
_interrupt_status &= ~1;
}
set_irq_line(_interrupt_status & 1);
}
inline void Machine::update_audio()
{
unsigned int difference = _frameCycles - _audioOutputPosition;
_audioOutputPosition = _frameCycles;
_speaker.run_for_cycles(difference / clock_rate_audio_divider);
_audioOutputPositionError = difference % clock_rate_audio_divider;
}
inline void Machine::start_pixel_line()
{
_current_pixel_line = (_current_pixel_line+1)&255;
if(!_current_pixel_line)
{
_startLineAddress = _startScreenAddress;
_current_character_row = 0;
_isBlankLine = false;
}
else
{
bool mode_has_blank_lines = (_screen_mode == 6) || (_screen_mode == 3);
_isBlankLine = (mode_has_blank_lines && ((_current_character_row > 7 && _current_character_row < 10) || (_current_pixel_line > 249)));
if(!_isBlankLine)
{
_startLineAddress++;
if(_current_character_row > 7)
{
_startLineAddress += ((_screen_mode < 4) ? 80 : 40) * 8 - 8;
_current_character_row = 0;
}
}
}
_currentScreenAddress = _startLineAddress;
_current_pixel_column = 0;
_initial_output_target = _current_output_target = nullptr;
}
inline void Machine::end_pixel_line()
{
if(_current_output_target) _crt->output_data((unsigned int)((_current_output_target - _initial_output_target) * _current_output_divider), _current_output_divider);
_current_character_row++;
}
inline void Machine::output_pixels(unsigned int number_of_cycles)
{
if(!number_of_cycles) return;
if(_isBlankLine)
{
_crt->output_blank(number_of_cycles * crt_cycles_multiplier);
}
else
{
unsigned int divider = 0;
switch(_screen_mode)
{
case 0: case 3: divider = 2; break;
case 1: case 4: case 6: divider = 4; break;
case 2: case 5: divider = 8; break;
}
if(!_initial_output_target || divider != _current_output_divider)
{
if(_current_output_target) _crt->output_data((unsigned int)((_current_output_target - _initial_output_target) * _current_output_divider), _current_output_divider);
_current_output_divider = divider;
_initial_output_target = _current_output_target = _crt->allocate_write_area(640 / _current_output_divider);
}
#define get_pixel() \
if(_currentScreenAddress&32768)\
{\
_currentScreenAddress = (_screenModeBaseAddress + _currentScreenAddress)&32767;\
}\
_last_pixel_byte = _ram[_currentScreenAddress];\
_currentScreenAddress = _currentScreenAddress+8
switch(_screen_mode)
{
case 0: case 3:
if(_initial_output_target)
{
while(number_of_cycles--)
{
get_pixel();
*(uint32_t *)_current_output_target = _paletteTables.eighty1bpp[_last_pixel_byte];
_current_output_target += 4;
_current_pixel_column++;
}
} else _current_output_target += 4*number_of_cycles;
break;
case 1:
if(_initial_output_target)
{
while(number_of_cycles--)
{
get_pixel();
*(uint16_t *)_current_output_target = _paletteTables.eighty2bpp[_last_pixel_byte];
_current_output_target += 2;
_current_pixel_column++;
}
} else _current_output_target += 2*number_of_cycles;
break;
case 2:
if(_initial_output_target)
{
while(number_of_cycles--)
{
get_pixel();
*_current_output_target = _paletteTables.eighty4bpp[_last_pixel_byte];
_current_output_target += 1;
_current_pixel_column++;
}
} else _current_output_target += number_of_cycles;
break;
case 4: case 6:
if(_initial_output_target)
{
if(_current_pixel_column&1)
{
_last_pixel_byte <<= 4;
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
number_of_cycles--;
_current_pixel_column++;
}
while(number_of_cycles > 1)
{
get_pixel();
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
_last_pixel_byte <<= 4;
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
number_of_cycles -= 2;
_current_pixel_column+=2;
}
if(number_of_cycles)
{
get_pixel();
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
_current_pixel_column++;
}
} else _current_output_target += 2 * number_of_cycles;
break;
case 5:
if(_initial_output_target)
{
if(_current_pixel_column&1)
{
_last_pixel_byte <<= 2;
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
number_of_cycles--;
_current_pixel_column++;
}
while(number_of_cycles > 1)
{
get_pixel();
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
_last_pixel_byte <<= 2;
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
number_of_cycles -= 2;
_current_pixel_column+=2;
}
if(number_of_cycles)
{
get_pixel();
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
_current_pixel_column++;
}
} else _current_output_target += number_of_cycles;
break;
}
#undef get_pixel
}
}
inline void Machine::update_display()
{
/*
Odd field: Even field:
|--S--| -S-|
|--S--| |--S--|
|-S-B-| = 3 |--S--| = 2.5
|--B--| |--B--|
|--P--| |--P--|
|--B--| = 312 |--B--| = 312.5
|-B-
*/
int final_line = _frameCycles >> 7;
while(_displayOutputPosition < _frameCycles)
{
int line = _displayOutputPosition >> 7;
// Priority one: sync.
// ===================
// full sync lines are 0, 1, field_divider_line+1 and field_divider_line+2
if(line == 0 || line == 1 || line == field_divider_line+1 || line == field_divider_line+2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
_crt->output_sync(128 * crt_cycles_multiplier);
_displayOutputPosition += 128;
continue;
}
// line 2 is a left-sync line
if(line == 2)
{
// wait for the line to complete before signalling
if(final_line == line) return;
_crt->output_sync(64 * crt_cycles_multiplier);
_crt->output_blank(64 * crt_cycles_multiplier);
_displayOutputPosition += 128;
continue;
}
// line field_divider_line is a right-sync line
if(line == field_divider_line)
{
// wait for the line to complete before signalling
if(final_line == line) return;
_crt->output_sync(9 * crt_cycles_multiplier);
_crt->output_blank(55 * crt_cycles_multiplier);
_crt->output_sync(64 * crt_cycles_multiplier);
_displayOutputPosition += 128;
continue;
}
// Priority two: blank lines.
// ==========================
//
// Given that it is not a sync line, this is a blank line if it is less than first_graphics_line, or greater
// than first_graphics_line+255 and less than first_graphics_line+field_divider_line, or greater than
// first_graphics_line+field_divider_line+255 (TODO: or this is Mode 3 or 6 and this should be blank)
if(
line < first_graphics_line ||
(line > first_graphics_line+255 && line < first_graphics_line+field_divider_line) ||
line > first_graphics_line+field_divider_line+255)
{
if(final_line == line) return;
_crt->output_sync(9 * crt_cycles_multiplier);
_crt->output_blank(119 * crt_cycles_multiplier);
_displayOutputPosition += 128;
continue;
}
// Final possibility: this is a pixel line.
// ========================================
// determine how far we're going from left to right
unsigned int this_cycle = _displayOutputPosition&127;
unsigned int final_cycle = _frameCycles&127;
if(final_line > line)
{
final_cycle = 128;
}
// output format is:
// 9 cycles: sync
// ... to 24 cycles: colour burst
// ... to first_graphics_cycle: blank
// ... for 80 cycles: pixels
// ... until end of line: blank
while(this_cycle < final_cycle)
{
if(this_cycle < 9)
{
if(final_cycle < 9) return;
_crt->output_sync(9 * crt_cycles_multiplier);
_displayOutputPosition += 9;
this_cycle = 9;
}
if(this_cycle < 24)
{
if(final_cycle < 24) return;
_crt->output_colour_burst((24-9) * crt_cycles_multiplier, _phase, 12);
_displayOutputPosition += 24-9;
this_cycle = 24;
// TODO: phase shouldn't be zero on every line
}
if(this_cycle < first_graphics_cycle)
{
if(final_cycle < first_graphics_cycle) return;
_crt->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier);
_displayOutputPosition += first_graphics_cycle - 24;
this_cycle = first_graphics_cycle;
start_pixel_line();
}
if(this_cycle < first_graphics_cycle + 80)
{
unsigned int length_to_output = std::min(final_cycle, (first_graphics_cycle + 80)) - this_cycle;
output_pixels(length_to_output);
_displayOutputPosition += length_to_output;
this_cycle += length_to_output;
}
if(this_cycle >= first_graphics_cycle + 80)
{
if(final_cycle < 128) return;
end_pixel_line();
_crt->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier);
_displayOutputPosition += 128 - (first_graphics_cycle + 80);
this_cycle = 128;
}
}
}
}
void Machine::clear_all_keys()
{
memset(_key_states, 0, sizeof(_key_states));
}
void Machine::set_key_state(Key key, bool isPressed)
{
if(key == KeyBreak)
{
set_reset_line(isPressed);
}
else
{
if(isPressed)
_key_states[key >> 4] |= key&0xf;
else
_key_states[key >> 4] &= ~(key&0xf);
}
}
/*
Speaker
*/
void Speaker::get_samples(unsigned int number_of_samples, int16_t *target)
{
if(_is_enabled)
{
while(number_of_samples--)
{
*target = (int16_t)((_counter / (_divider+1)) * 8192);
target++;
_counter = (_counter + 1) % ((_divider+1) * 2);
}
}
else
{
memset(target, 0, sizeof(int16_t) * number_of_samples);
}
}
void Speaker::skip_samples(unsigned int number_of_samples)
{
_counter = (_counter + number_of_samples) % ((_divider+1) * 2);
}
void Speaker::set_divider(uint8_t divider)
{
_divider = divider * 32 / clock_rate_audio_divider;
}
void Speaker::set_is_enabled(bool is_enabled)
{
_is_enabled = is_enabled;
_counter = 0;
}
/*
Tape
*/
Tape::Tape() :
TapePlayer(2000000),
_is_running(false),
_data_register(0),
_delegate(nullptr),
_output({.bits_remaining_until_empty = 0, .cycles_into_pulse = 0}),
_last_posted_interrupt_status(0),
_interrupt_status(0)
{}
inline void Tape::push_tape_bit(uint16_t bit)
{
_data_register = (uint16_t)((_data_register >> 1) | (bit << 10));
if(_input.minimum_bits_until_full) _input.minimum_bits_until_full--;
if(_input.minimum_bits_until_full == 8) _interrupt_status &= ~Interrupt::ReceiveDataFull;
if(!_input.minimum_bits_until_full)
{
if((_data_register&0x3) == 0x1)
{
_interrupt_status |= Interrupt::ReceiveDataFull;
if(_is_in_input_mode) _input.minimum_bits_until_full = 9;
}
}
if(_output.bits_remaining_until_empty) _output.bits_remaining_until_empty--;
if(!_output.bits_remaining_until_empty) _interrupt_status |= Interrupt::TransmitDataEmpty;
if(_data_register == 0x3ff) _interrupt_status |= Interrupt::HighToneDetect;
else _interrupt_status &= ~Interrupt::HighToneDetect;
evaluate_interrupts();
}
inline void Tape::evaluate_interrupts()
{
if(_last_posted_interrupt_status != _interrupt_status)
{
_last_posted_interrupt_status = _interrupt_status;
if(_delegate) _delegate->tape_did_change_interrupt_status(this);
}
}
inline void Tape::clear_interrupts(uint8_t interrupts)
{
_interrupt_status &= ~interrupts;
evaluate_interrupts();
}
inline void Tape::set_is_in_input_mode(bool is_in_input_mode)
{
_is_in_input_mode = is_in_input_mode;
}
inline void Tape::set_counter(uint8_t value)
{
_output.cycles_into_pulse = 0;
_output.bits_remaining_until_empty = 0;
}
inline void Tape::set_data_register(uint8_t value)
{
_data_register = (uint16_t)((value << 2) | 1);
_output.bits_remaining_until_empty = 9;
}
inline uint8_t Tape::get_data_register()
{
return (uint8_t)(_data_register >> 2);
}
inline void Tape::process_input_pulse(Storage::Tape::Pulse pulse)
{
_crossings[0] = _crossings[1];
_crossings[1] = _crossings[2];
_crossings[2] = _crossings[3];
_crossings[3] = Tape::Unrecognised;
if(pulse.type != Storage::Tape::Pulse::Zero)
{
float pulse_length = (float)pulse.length.length / (float)pulse.length.clock_rate;
if(pulse_length >= 0.35 / 2400.0 && pulse_length < 0.7 / 2400.0) _crossings[3] = Tape::Short;
if(pulse_length >= 0.35 / 1200.0 && pulse_length < 0.7 / 1200.0) _crossings[3] = Tape::Long;
}
if(_crossings[0] == Tape::Long && _crossings[1] == Tape::Long)
{
push_tape_bit(0);
_crossings[0] = _crossings[1] = Tape::Recognised;
}
else
{
if(_crossings[0] == Tape::Short && _crossings[1] == Tape::Short && _crossings[2] == Tape::Short && _crossings[3] == Tape::Short)
{
push_tape_bit(1);
_crossings[0] = _crossings[1] =
_crossings[2] = _crossings[3] = Tape::Recognised;
}
}
}
inline void Tape::run_for_cycles(unsigned int number_of_cycles)
{
if(_is_enabled)
{
if(_is_in_input_mode)
{
if(_is_running)
{
TapePlayer::run_for_cycles(number_of_cycles);
}
}
else
{
_output.cycles_into_pulse += number_of_cycles;
while(_output.cycles_into_pulse > 1664) // 1664 = the closest you can get to 1200 baud if you're looking for something
{ // that divides the 125,000Hz clock that the sound divider runs off.
_output.cycles_into_pulse -= 1664;
push_tape_bit(1);
}
}
}
}
#pragma mark - Typer
int Machine::get_typer_delay()
{
return get_reset_line() ? 625*25*128 : 0; // wait one second if resetting
}
int Machine::get_typer_frequency()
{
return 625*128; // accept a new character every frame
}
bool Machine::typer_set_next_character(::Utility::Typer *typer, char character, int phase)
{
if(!phase) clear_all_keys();
// The following table is arranged in ASCII order
Key key_sequences[][3] = {
{NotMapped}, {NotMapped}, {NotMapped}, {NotMapped}, {NotMapped}, {NotMapped}, {NotMapped}, {NotMapped},
{KeyDelete, TerminateSequence},
{NotMapped},
{KeyReturn, TerminateSequence},
{NotMapped}, {NotMapped}, {NotMapped}, {NotMapped}, {NotMapped},
{NotMapped}, {NotMapped}, {NotMapped}, {NotMapped},
{NotMapped}, {NotMapped}, {NotMapped}, {NotMapped},
{NotMapped}, {NotMapped}, {NotMapped}, {NotMapped},
{NotMapped}, {NotMapped}, {NotMapped}, {NotMapped},
{KeySpace, TerminateSequence}, // space
{KeyShift, Key1, TerminateSequence}, {KeyShift, Key2, TerminateSequence}, // !, "
{KeyShift, Key3, TerminateSequence}, {KeyShift, Key4, TerminateSequence}, // #, $
{KeyShift, Key5, TerminateSequence}, {KeyShift, Key6, TerminateSequence}, // %, &
{KeyShift, Key7, TerminateSequence}, {KeyShift, Key8, TerminateSequence}, // ', (
{KeyShift, Key9, TerminateSequence}, {KeyShift, KeyColon, TerminateSequence}, // ), *
{KeyShift, KeySemiColon, TerminateSequence}, {KeyComma, TerminateSequence}, // +, ,
{KeyMinus, TerminateSequence}, {KeyFullStop, TerminateSequence}, // -, .
{KeySlash, TerminateSequence}, // /
{Key0, TerminateSequence}, {Key1, TerminateSequence}, // 0, 1
{Key2, TerminateSequence}, {Key3, TerminateSequence}, // 2, 3
{Key4, TerminateSequence}, {Key5, TerminateSequence}, // 4, 5
{Key6, TerminateSequence}, {Key7, TerminateSequence}, // 6, 7
{Key8, TerminateSequence}, {Key9, TerminateSequence}, // 8, 9
{KeyColon, TerminateSequence}, {KeySemiColon, TerminateSequence}, // :, ;
{KeyShift, KeyComma, TerminateSequence}, {KeyShift, KeyMinus, TerminateSequence}, // <, =
{KeyShift, KeyFullStop, TerminateSequence}, {KeyShift, KeySlash, TerminateSequence}, // >, ?
{NotMapped}, // @
{KeyA, TerminateSequence}, {KeyB, TerminateSequence}, {KeyC, TerminateSequence}, {KeyD, TerminateSequence}, // A, B, C, D
{KeyE, TerminateSequence}, {KeyF, TerminateSequence}, {KeyG, TerminateSequence}, {KeyH, TerminateSequence}, // E, F, G, H
{KeyI, TerminateSequence}, {KeyJ, TerminateSequence}, {KeyK, TerminateSequence}, {KeyL, TerminateSequence}, // I, J, K L
{KeyM, TerminateSequence}, {KeyN, TerminateSequence}, {KeyO, TerminateSequence}, {KeyP, TerminateSequence}, // M, N, O, P
{KeyQ, TerminateSequence}, {KeyR, TerminateSequence}, {KeyS, TerminateSequence}, {KeyT, TerminateSequence}, // Q, R, S, T
{KeyU, TerminateSequence}, {KeyV, TerminateSequence}, {KeyW, TerminateSequence}, {KeyX, TerminateSequence}, // U, V, W X
{KeyY, TerminateSequence}, {KeyZ, TerminateSequence}, // Y, Z
{NotMapped}, {KeyControl, KeyRight, TerminateSequence}, // [, '\'
{NotMapped}, {KeyShift, KeyLeft, TerminateSequence}, // ], ^
{KeyShift, KeyDown, TerminateSequence}, {NotMapped}, // _, `
{KeyShift, KeyA, TerminateSequence}, {KeyShift, KeyB, TerminateSequence}, {KeyShift, KeyC, TerminateSequence}, {KeyShift, KeyD, TerminateSequence}, // a, b, c, d
{KeyShift, KeyE, TerminateSequence}, {KeyShift, KeyF, TerminateSequence}, {KeyShift, KeyG, TerminateSequence}, {KeyShift, KeyH, TerminateSequence}, // e, f, g, h
{KeyShift, KeyI, TerminateSequence}, {KeyShift, KeyJ, TerminateSequence}, {KeyShift, KeyK, TerminateSequence}, {KeyShift, KeyL, TerminateSequence}, // i, j, k, l
{KeyShift, KeyM, TerminateSequence}, {KeyShift, KeyN, TerminateSequence}, {KeyShift, KeyO, TerminateSequence}, {KeyShift, KeyP, TerminateSequence}, // m, n, o, p
{KeyShift, KeyQ, TerminateSequence}, {KeyShift, KeyR, TerminateSequence}, {KeyShift, KeyS, TerminateSequence}, {KeyShift, KeyT, TerminateSequence}, // q, r, s, t
{KeyShift, KeyU, TerminateSequence}, {KeyShift, KeyV, TerminateSequence}, {KeyShift, KeyW, TerminateSequence}, {KeyShift, KeyX, TerminateSequence}, // u, v, w, x
{KeyShift, KeyY, TerminateSequence}, {KeyShift, KeyZ, TerminateSequence}, // y, z
{KeyControl, KeyUp, TerminateSequence}, {KeyShift, KeyRight, TerminateSequence}, // {, |
{KeyControl, KeyDown, TerminateSequence}, {KeyControl, KeyLeft, TerminateSequence}, // }, ~
};
Key *key_sequence = nullptr;
character &= 0x7f;
if(character < sizeof(key_sequences) / sizeof(*key_sequences))
{
key_sequence = key_sequences[character];
if(key_sequence[0] != NotMapped)
{
if(phase > 0)
{
set_key_state(key_sequence[phase-1], true);
return key_sequence[phase] == TerminateSequence;
}
else
return false;
}
}
return true;
}