1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 08:31:11 +00:00
CLK/Components/OPL2/Implementation/Operator.cpp
2020-04-30 19:35:09 -04:00

309 lines
12 KiB
C++

//
// Operator.cpp
// Clock Signal
//
// Created by Thomas Harte on 15/04/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#include "Operator.hpp"
#include <algorithm>
#include <cassert>
using namespace Yamaha::OPL;
// MARK: - Setters
void Operator::set_attack_decay(uint8_t value) {
attack_rate_ = (value & 0xf0) >> 2;
decay_rate_ = (value & 0x0f) << 2;
}
void Operator::set_sustain_release(uint8_t value) {
sustain_level_ = (value & 0xf0) >> 4;
release_rate_ = (value & 0x0f) << 2;
}
void Operator::set_scaling_output(uint8_t value) {
key_level_scaling_ = value >> 6;
attenuation_ = value & 0x3f;
}
void Operator::set_waveform(uint8_t value) {
waveform_ = Operator::Waveform(value & 3);
}
void Operator::set_am_vibrato_hold_sustain_ksr_multiple(uint8_t value) {
apply_amplitude_modulation_ = value & 0x80;
apply_vibrato_ = value & 0x40;
use_sustain_level_ = value & 0x20;
key_rate_scaling_shift_ = (value & 0x10) ? 0 : 2;
frequency_multiple_ = value & 0xf;
}
// MARK: - Getter
bool Operator::is_audible(OperatorState &state, OperatorOverrides *overrides) {
// TODO: (i) do I actually want to support this functionality? (ii) if so, fix below.
if(state.adsr_phase_ == OperatorState::ADSRPhase::Release) {
if(overrides) {
if(overrides->attenuation == 0xf) return false;
} else {
if(attenuation_ == 0x3f) return false;
}
}
return state.adsr_attenuation_ != 511;
}
// MARK: - Update logic.
void Operator::update_adsr(
OperatorState &state,
const LowFrequencyOscillator &oscillator,
bool key_on,
int channel_period,
int channel_octave,
const OperatorOverrides *overrides) {
// Key-on logic: any time it is false, be in the release state.
// On the leading edge of it becoming true, enter the attack state.
if(!key_on) {
state.adsr_phase_ = OperatorState::ADSRPhase::Release;
} else if(!state.last_key_on_) {
state.adsr_phase_ = OperatorState::ADSRPhase::Attack;
state.attack_time_ = 0;
// TODO: should this happen only if current ADSR attenuation is 511?
state.raw_phase_ = 0;
}
state.last_key_on_ = key_on;
// Adjust the ADSR attenuation appropriately;
// cf. http://forums.submarine.org.uk/phpBB/viewtopic.php?f=9&t=16 (primarily) for the source of the maths below.
// "An attack rate value of 52 (AR = 13) has 32 samples in the attack phase, an attack rate value of 48 (AR = 12)
// has 64 samples in the attack phase, but pairs of samples show the same envelope attenuation. I am however struggling to find a plausible algorithm to match the experimental results.
const int key_scaling_rate = ((channel_octave << 1) | (channel_period >> 9)) >> key_rate_scaling_shift_;
assert(key_scaling_rate < 16);
assert((channel_period >> 9) < 2);
switch(state.adsr_phase_) {
case OperatorState::ADSRPhase::Attack: {
const int attack_rate = attack_rate_ + key_scaling_rate;
// Rules:
//
// An attack rate of '13' has 32 samples in the attack phase; a rate of '12' has the same 32 steps, but spread out over 64 samples, etc.
// An attack rate of '14' uses a divide by four instead of two.
// 15 is instantaneous.
if(attack_rate >= 56) {
state.adsr_attenuation_ = state.adsr_attenuation_ - (state.adsr_attenuation_ >> 2) - 1;
} else {
const int sample_length = 1 << (14 - (attack_rate >> 2)); // TODO: don't throw away KSR bits.
if(!(state.attack_time_ & (sample_length - 1))) {
state.adsr_attenuation_ = state.adsr_attenuation_ - (state.adsr_attenuation_ >> 3) - 1;
}
}
// Two possible terminating conditions: (i) the attack rate is 15; (ii) full volume has been reached.
if(attack_rate > 60 || state.adsr_attenuation_ <= 0) {
state.adsr_attenuation_ = 0;
state.adsr_phase_ = OperatorState::ADSRPhase::Decay;
}
} break;
case OperatorState::ADSRPhase::Release:
case OperatorState::ADSRPhase::Decay:
{
// Rules:
//
// (relative to a 511 scale)
//
// A rate of 0 is no decay at all.
// A rate of 1 means increase 4 per cycle.
// A rate of 2 means increase 2 per cycle.
// A rate of 3 means increase 1 per cycle.
// A rate of 4 means increase 1 every other cycle.
// A rate of 5 means increase once every fourth cycle.
// etc.
// eighth, sixteenth, 32nd, 64th, 128th, 256th, 512th, 1024th, 2048th, 4096th, 8192th
const int decrease_rate = key_scaling_rate + ((state.adsr_phase_ == OperatorState::ADSRPhase::Decay) ? decay_rate_ : release_rate_);
if(decrease_rate) {
// TODO: don't throw away KSR bits.
switch(decrease_rate >> 2) {
case 1: state.adsr_attenuation_ += 32; break;
case 2: state.adsr_attenuation_ += 16; break;
default: {
const int sample_length = 1 << ((decrease_rate >> 2) - 4);
if(!(oscillator.counter & (sample_length - 1))) {
state.adsr_attenuation_ += 8;
}
} break;
}
}
// Clamp to the proper range.
state.adsr_attenuation_ = std::min(state.adsr_attenuation_, 511);
// Check for the decay exit condition.
if(state.adsr_phase_ == OperatorState::ADSRPhase::Decay && state.adsr_attenuation_ >= (sustain_level_ << 3)) {
state.adsr_attenuation_ = sustain_level_ << 3;
state.adsr_phase_ = ((overrides && overrides->use_sustain_level) || use_sustain_level_) ? OperatorState::ADSRPhase::Sustain : OperatorState::ADSRPhase::Release;
}
} break;
case OperatorState::ADSRPhase::Sustain:
// Nothing to do.
break;
}
++state.attack_time_;
}
void Operator::update_phase(OperatorState &state, const LowFrequencyOscillator &oscillator, int channel_period, int channel_octave) {
// Per the documentation:
//
// Delta phase = ( [desired freq] * 2^19 / [input clock / 72] ) / 2 ^ (b - 1)
//
// After experimentation, I think this gives rate calculation as formulated below.
// This encodes the MUL -> multiple table given on page 12,
// multiplied by two.
constexpr int multipliers[] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
const int top_freq = channel_period >> 7;
assert(top_freq < 8);
constexpr int vibrato_shifts[8] = {3, 1, 0, 1, 3, 1, 0, 1};
constexpr int vibrato_signs[2] = {1, -1};
const int vibrato = (top_freq >> vibrato_shifts[oscillator.vibrato]) * vibrato_signs[oscillator.vibrato >> 2] * int(apply_vibrato_);
// Update the raw phase.
state.raw_phase_ += multipliers[frequency_multiple_] * (channel_period + vibrato) << channel_octave;
}
int Operator::key_level_scaling(const OperatorState &state, int channel_period, int channel_octave) const {
// Calculate key-level scaling. Table is as per p14 of the YM3812 application manual,
// converted into a fixed-point scheme. Compare with https://www.smspower.org/Development/RE12
// and apologies for the highly ad hoc indentation.
constexpr int key_level_scale_shifts[4] = {7, 1, 2, 0}; // '7' is just a number large enough to render all the numbers below as 0.
constexpr int key_level_scales[8][16] = {
#define _ 0
// 6 db attenuations.
{_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _},
{_, _, _, _, _, _, _, _, _, 4, 6, 8, 10, 12, 14, 16},
{_, _, _, _, _, 6, 10, 14, 16, 20, 22, 24, 26, 28, 30, 32},
{_, _, _, 10, 16, 22, 26, 30, 32, 36, 38, 40, 42, 44, 46, 48},
{_, _, 16, 26, 32, 38, 42, 46, 48, 52, 54, 56, 58, 60, 62, 64},
{_, 16, 32, 42, 48, 54, 58, 62, 64, 68, 70, 72, 74, 76, 78, 80},
{_, 32, 48, 58, 64, 70, 74, 78, 80, 84, 86, 88, 90, 92, 94, 96},
{_, 48, 64, 74, 80, 86, 90, 94, 96, 100, 102, 104, 106, 108, 110, 112},
#undef _
};
assert((channel_period >> 6) < 16);
assert(channel_octave < 8);
return (key_level_scales[channel_octave][channel_period >> 6] >> key_level_scale_shifts[key_level_scaling_]) << 7;
}
int Operator::adsr_tremolo_attenuation(const OperatorState &state, const LowFrequencyOscillator &oscillator) const {
// Add optional tremolo to the current ADSR attenuation.
return (state.adsr_attenuation_ << 3) + (int(apply_amplitude_modulation_) * oscillator.tremolo << 4);
}
int Operator::fixed_attenuation(const OperatorState &state, const OperatorOverrides *overrides) const {
if(overrides) {
// Overrides here represent per-channel volume on an OPLL. The bits are defined to represent
// attenuations of 24db to 3db; the main envelope generator is stated to have a resolution of
// 0.325db (which I've assumed is supposed to say 0.375db).
return overrides->attenuation << 7;
} else {
// Overrides here represent per-channel volume on an OPLL. The bits are defined to represent
// attenuations of 24db to 0.75db.
return attenuation_ << 5;
}
}
void Operator::update(
OperatorState &state,
const LowFrequencyOscillator &oscillator,
bool key_on,
int channel_period,
int channel_octave,
const OperatorOverrides *overrides) {
update_adsr(state, oscillator, key_on, channel_period, channel_octave, overrides);
update_phase(state, oscillator, channel_period, channel_octave);
state.key_level_scaling_ = key_level_scaling(state, channel_period, channel_octave);
state.adsr_tremolo_attenuation_ = adsr_tremolo_attenuation(state, oscillator);
state.lfsr_ = oscillator.lfsr;
}
// TODO: both the tremolo and ADSR envelopes should be half-resolution on an OPLL.
// MARK: - Output Generators.
// A heavy debt is owed to https://github.com/andete/ym2413/blob/master/results/rhythm/rhythm.md regarding
// the drum sound generation below.
LogSign Operator::melodic_output(const OperatorState &state, const LogSign *phase_offset, const OperatorOverrides *overrides) const {
// Calculate raw attenuation level.
constexpr int waveforms[4][4] = {
{1023, 1023, 1023, 1023}, // Sine: don't mask in any quadrant.
{511, 511, 0, 0}, // Half sine: keep the first half intact, lock to 0 in the second half.
{511, 511, 511, 511}, // AbsSine: endlessly repeat the first half of the sine wave.
{255, 0, 255, 0}, // PulseSine: act as if the first quadrant is in the first and third; lock the other two to 0.
};
const int scaled_phase_offset = phase_offset ? phase_offset->level(11) : 0;
const int phase = (state.raw_phase_ + scaled_phase_offset) >> 11;
LogSign result = negative_log_sin(phase & waveforms[int(waveform_)][(phase >> 8) & 3]);
result += state.key_level_scaling_;
result += state.adsr_tremolo_attenuation_ + fixed_attenuation(state, overrides);
return result;
}
LogSign Operator::snare_output(const OperatorState &state, const OperatorOverrides *overrides) const {
LogSign result;
// If noise is 0, output is positive.
// If noise is 1, output is negative.
// If (noise ^ sign) is 0, output is 0. Otherwise it is max.
const int sign = (state.raw_phase_ >> 11) & 0x200;
const int level = ((state.raw_phase_ >> 20) & 1) ^ state.lfsr_;
result = negative_log_sin(sign + (level << 8));
result += state.key_level_scaling_;
result += state.adsr_tremolo_attenuation_ + fixed_attenuation(state, overrides);
return result;
}
LogSign Operator::cymbal_output(const OperatorState &state, const OperatorState &modulator, const OperatorOverrides *overrides) const {
const int output =
((state.raw_phase_ >> 16) ^ (state.raw_phase_ >> 14)) &
((modulator.raw_phase_ >> 18) ^ (modulator.raw_phase_ >> 13)) &
((state.raw_phase_ >> 16) ^ (modulator.raw_phase_ >> 14));
constexpr int angles[] = {256, 768};
LogSign result = negative_log_sin(angles[output & 1]);
result += state.key_level_scaling_;
result += state.adsr_tremolo_attenuation_ + fixed_attenuation(state, overrides);
return result;
}
LogSign Operator::high_hat_output(const OperatorState &state, const OperatorState &modulator, const OperatorOverrides *overrides) const {
const int output =
((state.raw_phase_ >> 16) ^ (state.raw_phase_ >> 14)) &
((modulator.raw_phase_ >> 18) ^ (modulator.raw_phase_ >> 13)) &
((state.raw_phase_ >> 16) ^ (modulator.raw_phase_ >> 14));
constexpr int angles[] = {0x234, 0xd0, 0x2d0, 0x34};
LogSign result = negative_log_sin(angles[(output & 1) | (state.lfsr_ << 1)]);
result += state.key_level_scaling_;
result += state.adsr_tremolo_attenuation_ + fixed_attenuation(state, overrides);
return result;
}