1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-17 10:06:21 +00:00
CLK/ClockReceiver/JustInTime.hpp
2024-01-16 23:34:46 -05:00

337 lines
12 KiB
C++

//
// JustInTime.hpp
// Clock Signal
//
// Created by Thomas Harte on 28/07/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#pragma once
#include "ClockReceiver.hpp"
#include "../Concurrency/AsyncTaskQueue.hpp"
#include "ClockingHintSource.hpp"
#include "ForceInline.hpp"
#include <atomic>
/*!
A JustInTimeActor holds (i) an embedded object with a run_for method; and (ii) an amount
of time since run_for was last called.
Time can be added using the += operator. The -> operator can be used to access the
embedded object. All time accumulated will be pushed to object before the pointer is returned.
Machines that accumulate HalfCycle time but supply to a Cycle-counted device may supply a
separate @c TargetTimeScale at template declaration.
If the held object implements @c next_sequence_point() then it'll be used to flush implicitly
as and when sequence points are hit. Callers can use will_flush() to predict these.
If the held object is a subclass of ClockingHint::Source, this template will register as an
observer and potentially stop clocking or stop delaying clocking until just-in-time references
as directed.
TODO: incorporate and codify AsyncJustInTimeActor.
*/
template <class T, class LocalTimeScale = HalfCycles, int multiplier = 1, int divider = 1> class JustInTimeActor:
public ClockingHint::Observer {
private:
/*!
A std::unique_ptr deleter which causes an update_sequence_point to occur on the actor supplied
to it at construction if it implements @c next_sequence_point(). Otherwise destruction is a no-op.
**Does not delete the object.**
This is used by the -> operators below, which provide a unique pointer to the enclosed object and
update their sequence points upon its destruction — i.e. after the caller has made whatever call
or calls as were relevant to the enclosed object.
*/
class SequencePointAwareDeleter {
public:
explicit SequencePointAwareDeleter(JustInTimeActor<T, LocalTimeScale, multiplier, divider> *actor) noexcept
: actor_(actor) {}
forceinline void operator ()(const T *const) const {
if constexpr (has_sequence_points<T>::value) {
actor_->update_sequence_point();
}
}
private:
JustInTimeActor<T, LocalTimeScale, multiplier, divider> *const actor_;
};
// This block of SFINAE determines whether objects of type T accepts Cycles or HalfCycles.
using HalfRunFor = void (T::*const)(HalfCycles);
static uint8_t half_sig(...);
static uint16_t half_sig(HalfRunFor);
using TargetTimeScale =
std::conditional_t<
sizeof(half_sig(&T::run_for)) == sizeof(uint16_t),
HalfCycles,
Cycles>;
public:
/// Constructs a new JustInTimeActor using the same construction arguments as the included object.
template<typename... Args> JustInTimeActor(Args&&... args) : object_(std::forward<Args>(args)...) {
if constexpr (std::is_base_of<ClockingHint::Source, T>::value) {
object_.set_clocking_hint_observer(this);
}
}
/// Adds time to the actor.
///
/// @returns @c true if adding time caused a flush; @c false otherwise.
forceinline bool operator += (LocalTimeScale rhs) {
if constexpr (std::is_base_of<ClockingHint::Source, T>::value) {
if(clocking_preference_ == ClockingHint::Preference::None) {
return false;
}
}
if constexpr (multiplier != 1) {
time_since_update_ += rhs * multiplier;
} else {
time_since_update_ += rhs;
}
is_flushed_ = false;
if constexpr (std::is_base_of<ClockingHint::Source, T>::value) {
if (clocking_preference_ == ClockingHint::Preference::RealTime) {
flush();
return true;
}
}
if constexpr (has_sequence_points<T>::value) {
time_until_event_ -= rhs * multiplier;
if(time_until_event_ <= LocalTimeScale(0)) {
time_overrun_ = time_until_event_ / divider;
flush();
update_sequence_point();
return true;
}
}
return false;
}
/// Flushes all accumulated time and returns a pointer to the included object.
///
/// If this object provides sequence points, checks for changes to the next
/// sequence point upon deletion of the pointer.
[[nodiscard]] forceinline auto operator->() {
#ifndef NDEBUG
assert(!flush_concurrency_check_.test_and_set());
#endif
flush();
#ifndef NDEBUG
flush_concurrency_check_.clear();
#endif
return std::unique_ptr<T, SequencePointAwareDeleter>(&object_, SequencePointAwareDeleter(this));
}
/// Acts exactly as per the standard ->, but preserves constness.
///
/// Despite being const, this will flush the object and, if relevant, update the next sequence point.
[[nodiscard]] forceinline auto operator -> () const {
auto non_const_this = const_cast<JustInTimeActor<T, LocalTimeScale, multiplier, divider> *>(this);
#ifndef NDEBUG
assert(!non_const_this->flush_concurrency_check_.test_and_set());
#endif
non_const_this->flush();
#ifndef NDEBUG
non_const_this->flush_concurrency_check_.clear();
#endif
return std::unique_ptr<const T, SequencePointAwareDeleter>(&object_, SequencePointAwareDeleter(non_const_this));
}
/// @returns a pointer to the included object, without flushing time.
[[nodiscard]] forceinline T *last_valid() {
return &object_;
}
/// @returns a const pointer to the included object, without flushing time.
[[nodiscard]] forceinline const T *last_valid() const {
return &object_;
}
/// @returns the amount of time since the object was last flushed, in the target time scale.
[[nodiscard]] forceinline TargetTimeScale time_since_flush() const {
if constexpr (divider == 1) {
return time_since_update_;
}
return TargetTimeScale(time_since_update_.as_integral() / divider);
}
/// @returns the amount of time since the object was last flushed, plus the local time scale @c offset,
/// converted to the target time scale.
[[nodiscard]] forceinline TargetTimeScale time_since_flush(LocalTimeScale offset) const {
if constexpr (divider == 1) {
return time_since_update_ + offset;
}
return TargetTimeScale((time_since_update_ + offset).as_integral() / divider);
}
/// Flushes all accumulated time.
///
/// This does not affect this actor's record of when the next sequence point will occur.
forceinline void flush() {
if(!is_flushed_) {
did_flush_ = is_flushed_ = true;
if constexpr (divider == 1) {
const auto duration = time_since_update_.template flush<TargetTimeScale>();
object_.run_for(duration);
} else {
const auto duration = time_since_update_.template divide<TargetTimeScale>(LocalTimeScale(divider));
if(duration > TargetTimeScale(0))
object_.run_for(duration);
}
}
}
/// Indicates whether a flush has occurred since the last call to did_flush().
[[nodiscard]] forceinline bool did_flush() {
const bool did_flush = did_flush_;
did_flush_ = false;
return did_flush;
}
/// @returns a number in the range [-max, 0] indicating the offset of the most recent sequence
/// point from the final time at the end of the += that triggered the sequence point.
[[nodiscard]] forceinline LocalTimeScale last_sequence_point_overrun() {
return time_overrun_;
}
/// @returns the number of cycles until the next sequence-point-based flush, if the embedded object
/// supports sequence points; @c LocalTimeScale() otherwise.
[[nodiscard]] LocalTimeScale cycles_until_implicit_flush() const {
return time_until_event_ / divider;
}
/// Indicates whether a sequence-point-caused flush will occur if the specified period is added.
[[nodiscard]] forceinline bool will_flush(LocalTimeScale rhs) const {
if constexpr (!has_sequence_points<T>::value) {
return false;
}
return rhs >= time_until_event_;
}
/// Indicates the amount of time, in the local time scale, until the first local slot that falls wholly
/// after @c duration, if that delay were to occur in @c offset units of time from now.
[[nodiscard]] forceinline LocalTimeScale back_map(TargetTimeScale duration, TargetTimeScale offset) const {
// A 1:1 mapping is easy.
if constexpr (multiplier == 1 && divider == 1) {
return duration;
}
// Work out when this query is placed, and the time to which it relates
const auto base = time_since_update_ + offset * divider;
const auto target = base + duration * divider;
// Figure out the number of whole input steps that is required to get
// past target, and subtract the number of whole input steps necessary
// to get to base.
const auto steps_to_base = base.as_integral() / multiplier;
const auto steps_to_target = (target.as_integral() + divider - 1) / multiplier;
return LocalTimeScale(steps_to_target - steps_to_base);
}
/// Updates this template's record of the next sequence point.
void update_sequence_point() {
if constexpr (has_sequence_points<T>::value) {
// Keep a fast path where no conversions will be applied; if conversions are
// going to be applied then do a direct max -> max translation rather than
// allowing the arithmetic to overflow.
if constexpr (divider == 1 && std::is_same_v<LocalTimeScale, TargetTimeScale>) {
time_until_event_ = object_.next_sequence_point();
} else {
const auto time = object_.next_sequence_point();
if(time == TargetTimeScale::max()) {
time_until_event_ = LocalTimeScale::max();
} else {
time_until_event_ = time * divider;
}
}
assert(time_until_event_ > LocalTimeScale(0));
}
}
/// @returns A cached copy of the object's clocking preference.
ClockingHint::Preference clocking_preference() const {
return clocking_preference_;
}
private:
T object_;
LocalTimeScale time_since_update_, time_until_event_, time_overrun_;
bool is_flushed_ = true;
bool did_flush_ = false;
template <typename S, typename = void> struct has_sequence_points : std::false_type {};
template <typename S> struct has_sequence_points<S, decltype(void(std::declval<S &>().next_sequence_point()))> : std::true_type {};
ClockingHint::Preference clocking_preference_ = ClockingHint::Preference::JustInTime;
void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference clocking) {
clocking_preference_ = clocking;
}
#ifndef NDEBUG
std::atomic_flag flush_concurrency_check_{};
#endif
};
/*!
An AsyncJustInTimeActor acts like a JustInTimeActor but additionally contains an AsyncTaskQueue.
Any time the amount of accumulated time crosses a threshold provided at construction time,
the object will be updated on the AsyncTaskQueue.
*/
template <class T, class LocalTimeScale = HalfCycles, class TargetTimeScale = LocalTimeScale> class AsyncJustInTimeActor {
public:
/// Constructs a new AsyncJustInTimeActor using the same construction arguments as the included object.
template<typename... Args> AsyncJustInTimeActor(TargetTimeScale threshold, Args&&... args) :
object_(std::forward<Args>(args)...),
threshold_(threshold) {}
/// Adds time to the actor.
inline void operator += (const LocalTimeScale &rhs) {
time_since_update_ += rhs;
if(time_since_update_ >= threshold_) {
time_since_update_ -= threshold_;
task_queue_.enqueue([this] () {
object_.run_for(threshold_);
});
}
is_flushed_ = false;
}
/// Flushes all accumulated time and returns a pointer to the included object.
inline T *operator->() {
flush();
return &object_;
}
/// Returns a pointer to the included object without flushing time.
inline T *last_valid() {
return &object_;
}
/// Flushes all accumulated time.
inline void flush() {
if(!is_flushed_) {
task_queue_.flush();
object_.run_for(time_since_update_.template flush<TargetTimeScale>());
is_flushed_ = true;
}
}
private:
T object_;
LocalTimeScale time_since_update_;
TargetTimeScale threshold_;
bool is_flushed_ = true;
Concurrency::AsyncTaskQueue<true> task_queue_;
};