1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-26 10:29:31 +00:00
CLK/Components/9918/Implementation/Fetch.hpp
2023-02-14 20:23:17 -05:00

615 lines
22 KiB
C++

//
// Fetch.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Fetch_hpp
#define Fetch_hpp
/*
Fetching routines follow below; they obey the following rules:
1) input is a start position and an end position; they should perform the proper
operations for the period: start <= time < end.
2) times are measured relative to a 172-cycles-per-line clock (so: they directly
count access windows on the TMS and Master System).
3) time 0 is the beginning of the access window immediately after the last pattern/data
block fetch that would contribute to this line, in a normal 32-column mode. So:
* it's cycle 309 on Mattias' TMS diagram;
* it's cycle 1238 on his V9938 diagram;
* it's after the last background render block in Mask of Destiny's Master System timing diagram.
That division point was selected, albeit arbitrarily, because it puts all the tile
fetches for a single line into the same [0, 171] period.
4) all of these functions are templated with a `use_end` parameter. That will be true if
end is < 172, false otherwise. So functions can use it to eliminate should-exit-not checks,
for the more usual path of execution.
Provided for the benefit of the methods below:
* the function external_slot(), which will perform any pending VRAM read/write.
* the macros slot(n) and external_slot(n) which can be used to schedule those things inside a
switch(start)-based implementation.
All functions should just spool data to intermediary storage. This is because for most VDPs there is
a decoupling between fetch pattern and output pattern, and it's neater to keep the same division
for the exceptions.
*/
#define slot(n) \
if(use_end && end == n) return; \
[[fallthrough]]; \
case n
#define external_slot(n) \
slot(n): do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(n));
#define external_slots_2(n) \
external_slot(n); \
external_slot(n+1);
#define external_slots_4(n) \
external_slots_2(n); \
external_slots_2(n+2);
#define external_slots_8(n) \
external_slots_4(n); \
external_slots_4(n+4);
#define external_slots_16(n) \
external_slots_8(n); \
external_slots_8(n+8);
#define external_slots_32(n) \
external_slots_16(n); \
external_slots_16(n+16);
// MARK: - TMS9918
template <Personality personality>
template<bool use_end, typename Fetcher> void Base<personality>::dispatch(Fetcher &fetcher, int start, int end) {
#define index(n) \
if(use_end && end == n) return; \
[[fallthrough]]; \
case n: fetcher.template fetch<n>();
switch(start) {
default: assert(false);
index(0); index(1); index(2); index(3); index(4); index(5); index(6); index(7); index(8); index(9);
index(10); index(11); index(12); index(13); index(14); index(15); index(16); index(17); index(18); index(19);
index(20); index(21); index(22); index(23); index(24); index(25); index(26); index(27); index(28); index(29);
index(30); index(31); index(32); index(33); index(34); index(35); index(36); index(37); index(38); index(39);
index(40); index(41); index(42); index(43); index(44); index(45); index(46); index(47); index(48); index(49);
index(50); index(51); index(52); index(53); index(54); index(55); index(56); index(57); index(58); index(59);
index(60); index(61); index(62); index(63); index(64); index(65); index(66); index(67); index(68); index(69);
index(70); index(71); index(72); index(73); index(74); index(75); index(76); index(77); index(78); index(79);
index(80); index(81); index(82); index(83); index(84); index(85); index(86); index(87); index(88); index(89);
index(90); index(91); index(92); index(93); index(94); index(95); index(96); index(97); index(98); index(99);
index(100); index(101); index(102); index(103); index(104); index(105); index(106); index(107); index(108); index(109);
index(110); index(111); index(112); index(113); index(114); index(115); index(116); index(117); index(118); index(119);
index(120); index(121); index(122); index(123); index(124); index(125); index(126); index(127); index(128); index(129);
index(130); index(131); index(132); index(133); index(134); index(135); index(136); index(137); index(138); index(139);
index(140); index(141); index(142); index(143); index(144); index(145); index(146); index(147); index(148); index(149);
index(150); index(151); index(152); index(153); index(154); index(155); index(156); index(157); index(158); index(159);
index(160); index(161); index(162); index(163); index(164); index(165); index(166); index(167); index(168); index(169);
index(170);
}
#undef index
}
namespace {
template <Personality personality>
struct RefreshFetcher {
RefreshFetcher(Base<personality> *base) : base(base) {}
template <int cycle> void fetch() {
// Do 44 external slots in a block, then treat every other slot as external.
if(cycle < 44 || (cycle&1)) {
base->do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(cycle));
}
}
Base<personality> *const base;
};
template <Personality personality>
struct TextFetcher {
using AddressT = typename Base<personality>::AddressT;
TextFetcher(Base<personality> *base, LineBuffer &buffer, int y) :
base(base),
line_buffer(buffer),
row_base(base->pattern_name_address_ & (0x3c00 | size_t(y >> 3) * 40)),
row_offset(base->pattern_generator_table_address_ & (0x3800 | (y & 7))) {}
template <int cycle> void fetch() {
// The first 47 and the final 4 slots are external.
if constexpr (cycle < 47 || cycle >= 167) {
base->do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(cycle));
return;
} else {
// For the 120 slots in between follow a three-step pattern of:
constexpr int offset = cycle - 47;
constexpr auto column = AddressT(offset / 3);
switch(offset % 3) {
case 0: base->name_[0] = base->ram_[row_base + column]; break; // (1) fetch tile name.
case 1: base->do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(cycle)); break; // (2) external slot.
case 2: line_buffer.characters.shapes[column] = base->ram_[row_offset + size_t(base->name_[0] << 3)]; break; // (3) fetch tile pattern.
}
}
}
Base<personality> *const base;
LineBuffer &line_buffer;
const AddressT row_base;
const AddressT row_offset;
};
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_tms_refresh(LineBuffer &, int, int start, int end) {
RefreshFetcher refresher(this);
dispatch<use_end>(refresher, start, end);
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_tms_text(LineBuffer &line_buffer, int y, int start, int end) {
TextFetcher fetcher(this, line_buffer, y);
dispatch<use_end>(fetcher, start, end);
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_tms_character(LineBuffer &line_buffer, int y, int start, int end) {
#define sprite_fetch_coordinates(location, sprite) \
slot(location): \
slot(location+1): \
line_buffer.active_sprites[sprite].x = \
ram_[\
sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 2))\
];
// This implementation doesn't refetch Y; it's unclear to me
// whether it's refetched.
#define sprite_fetch_graphics(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): {\
const uint8_t name = ram_[\
sprite_attribute_table_address_ & size_t(0x3f82 | (line_buffer.active_sprites[sprite].index << 2))\
] & (sprites_16x16_ ? ~3 : ~0);\
line_buffer.active_sprites[sprite].image[2] = ram_[\
sprite_attribute_table_address_ & size_t(0x3f83 | (line_buffer.active_sprites[sprite].index << 2))\
];\
line_buffer.active_sprites[sprite].x -= (line_buffer.active_sprites[sprite].image[2] & 0x80) >> 2;\
const size_t graphic_location = sprite_generator_table_address_ & size_t(0x3800 | (name << 3) | line_buffer.active_sprites[sprite].row); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location];\
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+16];\
}
#define sprite_fetch_block(location, sprite) \
sprite_fetch_coordinates(location, sprite) \
sprite_fetch_graphics(location+2, sprite)
#define sprite_y_read(location, sprite) \
slot(location): posit_sprite(sprite_selection_buffer, sprite, ram_[sprite_attribute_table_address_ & (((sprite) << 2) | 0x3f80)], y);
#define fetch_tile_name(column) tile_offset_ = ram_[(row_base + column) & 0x3fff];
#define fetch_tile(column) {\
line_buffer.tiles.patterns[column][1] = ram_[(colour_base + size_t((tile_offset_ << 3) >> colour_name_shift)) & 0x3fff]; \
line_buffer.tiles.patterns[column][0] = ram_[(pattern_base + size_t(tile_offset_ << 3)) & 0x3fff]; \
}
#define background_fetch_block(location, column, sprite) \
slot(location): fetch_tile_name(column) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): fetch_tile(column) \
slot(location+4): fetch_tile_name(column+1) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): fetch_tile(column+1) \
slot(location+8): fetch_tile_name(column+2) \
sprite_y_read(location+9, sprite+1); \
slot(location+10): \
slot(location+11): fetch_tile(column+2) \
slot(location+12): fetch_tile_name(column+3) \
sprite_y_read(location+13, sprite+2); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
LineBuffer &sprite_selection_buffer = line_buffers_[(y + 1) % mode_timing_.total_lines];
const size_t row_base = pattern_name_address_ & (size_t((y << 2)&~31) | 0x3c00);
size_t pattern_base = pattern_generator_table_address_;
size_t colour_base = colour_table_address_;
int colour_name_shift = 6;
if(screen_mode_ == ScreenMode::Graphics) {
// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
pattern_base &= size_t(0x2000 | ((y & 0xc0) << 5));
colour_base &= size_t(0x2000 | ((y & 0xc0) << 5));
colour_base += size_t(y & 7);
colour_name_shift = 0;
} else {
colour_base &= size_t(0xffc0);
pattern_base &= size_t(0x3800);
}
if(screen_mode_ == ScreenMode::MultiColour) {
pattern_base += size_t((y >> 2) & 7);
} else {
pattern_base += size_t(y & 7);
}
switch(start) {
default: assert(false);
external_slots_2(0);
sprite_fetch_block(2, 0);
sprite_fetch_block(8, 1);
sprite_fetch_coordinates(14, 2);
external_slots_4(16);
external_slot(20);
sprite_fetch_graphics(21, 2);
sprite_fetch_block(25, 3);
slot(31):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(31));
external_slots_2(32);
external_slot(34);
sprite_y_read(35, 0);
sprite_y_read(36, 1);
sprite_y_read(37, 2);
sprite_y_read(38, 3);
sprite_y_read(39, 4);
sprite_y_read(40, 5);
sprite_y_read(41, 6);
sprite_y_read(42, 7);
background_fetch_block(43, 0, 8);
background_fetch_block(59, 4, 11);
background_fetch_block(75, 8, 14);
background_fetch_block(91, 12, 17);
background_fetch_block(107, 16, 20);
background_fetch_block(123, 20, 23);
background_fetch_block(139, 24, 26);
background_fetch_block(155, 28, 29);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch_graphics
#undef sprite_fetch_coordinates
}
// MARK: - Master System
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_sms(LineBuffer &line_buffer, int y, int start, int end) {
if constexpr (is_sega_vdp(personality)) {
#define sprite_fetch(sprite) {\
line_buffer.active_sprites[sprite].x = \
ram_[\
Storage<personality>::sprite_attribute_table_address_ & size_t(0x3f80 | (line_buffer.active_sprites[sprite].index << 1))\
] - (Storage<personality>::shift_sprites_8px_left_ ? 8 : 0); \
const uint8_t name = ram_[\
Storage<personality>::sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 1))\
] & (sprites_16x16_ ? ~1 : ~0);\
const size_t graphic_location = Storage<personality>::sprite_generator_table_address_ & size_t(0x2000 | (name << 5) | (line_buffer.active_sprites[sprite].row << 2)); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location]; \
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+1]; \
line_buffer.active_sprites[sprite].image[2] = ram_[graphic_location+2]; \
line_buffer.active_sprites[sprite].image[3] = ram_[graphic_location+3]; \
}
#define sprite_fetch_block(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): \
slot(location+4): \
slot(location+5): \
sprite_fetch(sprite);\
sprite_fetch(sprite+1);
#define sprite_y_read(location, sprite) \
slot(location): \
posit_sprite(sprite_selection_buffer, sprite, ram_[Storage<personality>::sprite_attribute_table_address_ & ((sprite) | 0x3f00)], y); \
posit_sprite(sprite_selection_buffer, sprite+1, ram_[Storage<personality>::sprite_attribute_table_address_ & ((sprite + 1) | 0x3f00)], y); \
#define fetch_tile_name(column, row_info) {\
const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\
const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \
line_buffer.tiles.flags[column] = ram_[address+1]; \
tile_offset_ = uint16_t( \
(((line_buffer.tiles.flags[column]&1) << 8) | ram_[address]) << 5 \
) + row_info.sub_row[(line_buffer.tiles.flags[column]&4) >> 2]; \
}
#define fetch_tile(column) \
line_buffer.tiles.patterns[column][0] = ram_[tile_offset_]; \
line_buffer.tiles.patterns[column][1] = ram_[tile_offset_+1]; \
line_buffer.tiles.patterns[column][2] = ram_[tile_offset_+2]; \
line_buffer.tiles.patterns[column][3] = ram_[tile_offset_+3];
#define background_fetch_block(location, column, sprite, row_info) \
slot(location): fetch_tile_name(column, row_info) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): \
slot(location+4): \
fetch_tile(column) \
fetch_tile_name(column+1, row_info) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): \
slot(location+8): \
fetch_tile(column+1) \
fetch_tile_name(column+2, row_info) \
sprite_y_read(location+9, sprite+2); \
slot(location+10): \
slot(location+11): \
slot(location+12): \
fetch_tile(column+2) \
fetch_tile_name(column+3, row_info) \
sprite_y_read(location+13, sprite+4); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
// Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it.
LineBuffer &sprite_selection_buffer = line_buffers_[(y + 1) % mode_timing_.total_lines];
const int horizontal_offset = (y >= 16 || !Storage<personality>::horizontal_scroll_lock_) ? (line_buffer.latched_horizontal_scroll >> 3) : 0;
// Limit address bits in use if this is a SMS2 mode.
const bool is_tall_mode = mode_timing_.pixel_lines != 192;
const size_t pattern_name_address = Storage<personality>::pattern_name_address_ | (is_tall_mode ? 0x800 : 0);
const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0;
// Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't.
// The programmer can opt out of applying vertical scrolling to the right-hand portion of the display.
const int scrolled_row = (y + Storage<personality>::latched_vertical_scroll_) % (is_tall_mode ? 256 : 224);
struct RowInfo {
AddressT pattern_address_base;
AddressT sub_row[2];
};
const RowInfo scrolled_row_info = {
AddressT((pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset),
{
AddressT((scrolled_row & 7) << 2),
AddressT(28 ^ ((scrolled_row & 7) << 2))
}
};
RowInfo row_info;
if(Storage<personality>::vertical_scroll_lock_) {
row_info.pattern_address_base = AddressT((pattern_name_address & AddressT(((y & ~7) << 3) | 0x3800)) - pattern_name_offset);
row_info.sub_row[0] = AddressT((y & 7) << 2);
row_info.sub_row[1] = 28 ^ AddressT((y & 7) << 2);
} else row_info = scrolled_row_info;
// ... and do the actual fetching, which follows this routine:
switch(start) {
default: assert(false);
sprite_fetch_block(0, 0);
sprite_fetch_block(6, 2);
external_slots_4(12);
external_slot(16);
sprite_fetch_block(17, 4);
sprite_fetch_block(23, 6);
slot(29):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(29));
external_slot(30);
sprite_y_read(31, 0);
sprite_y_read(32, 2);
sprite_y_read(33, 4);
sprite_y_read(34, 6);
sprite_y_read(35, 8);
sprite_y_read(36, 10);
sprite_y_read(37, 12);
sprite_y_read(38, 14);
background_fetch_block(39, 0, 16, scrolled_row_info);
background_fetch_block(55, 4, 22, scrolled_row_info);
background_fetch_block(71, 8, 28, scrolled_row_info);
background_fetch_block(87, 12, 34, scrolled_row_info);
background_fetch_block(103, 16, 40, scrolled_row_info);
background_fetch_block(119, 20, 46, scrolled_row_info);
background_fetch_block(135, 24, 52, row_info);
background_fetch_block(151, 28, 58, row_info);
external_slots_4(167);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch
}
}
// MARK: - Yamaha
template <Personality personality>
template<ScreenMode mode> void Base<personality>::fetch_yamaha(LineBuffer &line_buffer, int y, int end) {
const AddressT rotated_name_ = pattern_name_address_ >> 1;
const uint8_t *const ram2 = &ram_[65536];
using Type = typename Storage<personality>::Event::Type;
while(Storage<personality>::next_event_->offset < end) {
switch(Storage<personality>::next_event_->type) {
case Type::External:
do_external_slot(Storage<personality>::next_event_->offset);
break;
case Type::Name:
switch(mode) {
case ScreenMode::Text: {
const auto column = AddressT(Storage<personality>::data_block_);
const AddressT start = pattern_name_address_ & (0x1fc00 | size_t(y >> 3) * 40);
name_[0] = ram_[start + column + 0];
name_[1] = ram_[start + column + 1];
} break;
case ScreenMode::YamahaText80: {
const auto column = AddressT(Storage<personality>::data_block_);
const AddressT start = pattern_name_address_ & (0x1f800 | size_t(y >> 3) * 80);
name_[0] = ram_[start + column + 0];
name_[1] = ram_[start + column + 1];
name_[2] = ram_[start + column + 2];
name_[3] = ram_[start + column + 3];
} break;
default: break;
}
break;
case Type::Colour:
switch(mode) {
case ScreenMode::YamahaText80:
// TODO: read a single 'colour' (i.e. a bitfield, governing colour [/flashing?] selection for eight characters).
break;
default: break;
}
break;
case Type::Pattern:
switch(mode) {
case ScreenMode::Text: {
const auto column = AddressT(Storage<personality>::data_block_);
Storage<personality>::data_block_ += 2;
const AddressT start = pattern_generator_table_address_ & (0x1f800 | (y & 7));
line_buffer.characters.shapes[column + 0] = ram_[start + AddressT(name_[0] << 3)];
line_buffer.characters.shapes[column + 1] = ram_[start + AddressT(name_[1] << 3)];
} break;
case ScreenMode::YamahaText80: {
const auto column = AddressT(Storage<personality>::data_block_);
Storage<personality>::data_block_ += 4;
const AddressT start = pattern_generator_table_address_ & (0x1f800 | (y & 7));
line_buffer.characters.shapes[column + 0] = ram_[start + AddressT(name_[0] << 3)];
line_buffer.characters.shapes[column + 1] = ram_[start + AddressT(name_[1] << 3)];
line_buffer.characters.shapes[column + 2] = ram_[start + AddressT(name_[2] << 3)];
line_buffer.characters.shapes[column + 3] = ram_[start + AddressT(name_[3] << 3)];
} break;
default: break;
}
break;
case Type::DataBlock:
// Exactly how to fetch depends upon mode...
switch(mode) {
case ScreenMode::YamahaGraphics4:
case ScreenMode::YamahaGraphics5: {
const int column = Storage<personality>::data_block_;
Storage<personality>::data_block_ += 4;
const int start = (y << 7) | column | 0x1'8000;
line_buffer.bitmap[column + 0] = ram_[pattern_name_address_ & AddressT(start + 0)];
line_buffer.bitmap[column + 1] = ram_[pattern_name_address_ & AddressT(start + 1)];
line_buffer.bitmap[column + 2] = ram_[pattern_name_address_ & AddressT(start + 2)];
line_buffer.bitmap[column + 3] = ram_[pattern_name_address_ & AddressT(start + 3)];
} break;
case ScreenMode::YamahaGraphics6:
case ScreenMode::YamahaGraphics7: {
const int column = Storage<personality>::data_block_ << 1;
Storage<personality>::data_block_ += 4;
const int start = (y << 7) | column | 0x1'8000;
// Fetch from alternate banks.
line_buffer.bitmap[column + 0] = ram_[rotated_name_ & AddressT(start + 0)];
line_buffer.bitmap[column + 1] = ram2[rotated_name_ & AddressT(start + 0)];
line_buffer.bitmap[column + 2] = ram_[rotated_name_ & AddressT(start + 1)];
line_buffer.bitmap[column + 3] = ram2[rotated_name_ & AddressT(start + 1)];
line_buffer.bitmap[column + 4] = ram_[rotated_name_ & AddressT(start + 2)];
line_buffer.bitmap[column + 5] = ram2[rotated_name_ & AddressT(start + 2)];
line_buffer.bitmap[column + 6] = ram_[rotated_name_ & AddressT(start + 3)];
line_buffer.bitmap[column + 7] = ram2[rotated_name_ & AddressT(start + 3)];
} break;
default: break;
}
break;
default: break;
}
++Storage<personality>::next_event_;
}
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_yamaha(LineBuffer &line_buffer, int y, int, int end) {
if constexpr (is_yamaha_vdp(personality)) {
// Dispatch according to [supported] screen mode.
#define Dispatch(mode) case mode: fetch_yamaha<mode>(line_buffer, y, end); break;
switch(line_buffer.screen_mode) {
default: break;
Dispatch(ScreenMode::Blank);
Dispatch(ScreenMode::Text);
Dispatch(ScreenMode::MultiColour);
Dispatch(ScreenMode::ColouredText);
Dispatch(ScreenMode::Graphics);
Dispatch(ScreenMode::YamahaText80);
Dispatch(ScreenMode::YamahaGraphics3);
Dispatch(ScreenMode::YamahaGraphics4);
Dispatch(ScreenMode::YamahaGraphics5);
Dispatch(ScreenMode::YamahaGraphics6);
Dispatch(ScreenMode::YamahaGraphics7);
}
#undef Dispatch
}
}
// MARK: - Mega Drive
// TODO.
#undef external_slot
#undef slot
#endif /* Fetch_hpp */