1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Machines/Acorn/Archimedes/Archimedes.cpp
2024-03-19 20:26:17 -04:00

1185 lines
34 KiB
C++

//
// Archimedes.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#include "Archimedes.hpp"
#include "../../AudioProducer.hpp"
#include "../../KeyboardMachine.hpp"
#include "../../MediaTarget.hpp"
#include "../../ScanProducer.hpp"
#include "../../TimedMachine.hpp"
#include "../../../InstructionSets/ARM/Disassembler.hpp"
#include "../../../InstructionSets/ARM/Executor.hpp"
#include "../../../Outputs/Log.hpp"
#include "../../../Components/I2C/I2C.hpp"
#include <algorithm>
#include <array>
#include <set>
#include <vector>
namespace {
Log::Logger<Log::Source::Archimedes> logger;
enum class Zone {
LogicallyMappedRAM,
PhysicallyMappedRAM,
IOControllers,
LowROM,
HighROM,
VideoController,
DMAAndMEMC,
AddressTranslator,
};
constexpr std::array<Zone, 0x20> zones(bool is_read) {
std::array<Zone, 0x20> zones{};
for(size_t c = 0; c < zones.size(); c++) {
const auto address = c << 21;
if(address < 0x200'0000) {
zones[c] = Zone::LogicallyMappedRAM;
} else if(address < 0x300'0000) {
zones[c] = Zone::PhysicallyMappedRAM;
} else if(address < 0x340'0000) {
zones[c] = Zone::IOControllers;
} else if(address < 0x360'0000) {
zones[c] = is_read ? Zone::LowROM : Zone::VideoController;
} else if(address < 0x380'0000) {
zones[c] = is_read ? Zone::LowROM : Zone::DMAAndMEMC;
} else {
zones[c] = is_read ? Zone::HighROM : Zone::AddressTranslator;
}
}
return zones;
}
template <int start, int end> struct BitMask {
static_assert(start >= end);
static constexpr uint32_t value = ((1 << (start + 1)) - 1) - ((1 << end) - 1);
};
static_assert(BitMask<0, 0>::value == 1);
static_assert(BitMask<1, 1>::value == 2);
static_assert(BitMask<15, 15>::value == 32768);
static_assert(BitMask<15, 0>::value == 0xffff);
static_assert(BitMask<15, 14>::value == 49152);
}
namespace Archimedes {
struct CMOSRAM: public I2C::Peripheral {
};
/// Models a half-duplex serial link between two parties, framing bytes with one start bit and two stop bits.
struct HalfDuplexSerial {
static constexpr uint16_t ShiftMask = 0b1111'1110'0000'0000;
/// Enqueues @c value for output.
void output(int party, uint8_t value) {
parties_[party].output_count = 11;
parties_[party].input = 0x7ff;
parties_[party].output = uint16_t((value << 1) | ShiftMask);
}
/// @returns The last observed input.
uint8_t input(int party) const {
return uint8_t(parties_[party].input >> 1);
}
static constexpr uint8_t Receive = 1 << 0;
static constexpr uint8_t Transmit = 1 << 1;
/// @returns A bitmask of events that occurred during the last shift.
uint8_t events(int party) {
const auto result = parties_[party].events;
parties_[party].events = 0;
return result;
}
bool is_outputting(int party) const {
return parties_[party].output_count != 11;
}
/// Updates the shifters on both sides of the serial link.
void shift() {
const uint16_t next = parties_[0].output & parties_[1].output & 1;
for(int c = 0; c < 2; c++) {
if(parties_[c].output_count) {
--parties_[c].output_count;
if(!parties_[c].output_count) {
parties_[c].events |= Transmit;
parties_[c].input_count = -1;
}
parties_[c].output = (parties_[c].output >> 1) | ShiftMask;
} else {
// Check for a start bit.
if(parties_[c].input_count == -1 && !next) {
parties_[c].input_count = 0;
}
// Shift in if currently observing.
if(parties_[c].input_count >= 0 && parties_[c].input_count < 11) {
parties_[c].input = uint16_t((parties_[c].input >> 1) | (next << 10));
++parties_[c].input_count;
if(parties_[c].input_count == 11) {
parties_[c].events |= Receive;
parties_[c].input_count = -1;
}
}
}
}
}
private:
struct Party {
int output_count = 0;
int input_count = -1;
uint16_t output = 0xffff;
uint16_t input = 0;
uint8_t events = 0;
} parties_[2];
};
static constexpr int IOCParty = 0;
static constexpr int KeyboardParty = 1;
// Resource for the keyboard protocol: https://github.com/tmk/tmk_keyboard/wiki/ACORN-ARCHIMEDES-Keyboard
struct Keyboard {
Keyboard(HalfDuplexSerial &serial) : serial_(serial) {}
void update() {
if(serial_.events(KeyboardParty) & HalfDuplexSerial::Receive) {
const uint8_t input = serial_.input(KeyboardParty);
switch(input) {
case HRST:
// TODO:
case RAK1:
case RAK2:
serial_.output(KeyboardParty, input);
break;
case RQID:
serial_.output(KeyboardParty, 0x81); // TODO: what keyboard type?
break;
default:
printf("Keyboard declines to respond to %02x\n", input);
break;
}
}
}
private:
HalfDuplexSerial &serial_;
static constexpr uint8_t HRST = 0b1111'1111; // Keyboard reset.
static constexpr uint8_t RAK1 = 0b1111'1110; // Reset response #1.
static constexpr uint8_t RAK2 = 0b1111'1101; // Reset response #2.
static constexpr uint8_t RQID = 0b0010'0000; // Request for keyboard ID.
static constexpr uint8_t RQMP = 0b0010'0010; // Request for mouse data.
static constexpr uint8_t BACK = 0b0011'1111; // Acknowledge for first keyboard data byte pair.
static constexpr uint8_t NACK = 0b0011'0000; // Acknowledge for last keyboard data byte pair, selects scan/mouse mode.
static constexpr uint8_t SACK = 0b0011'0001; // Last data byte acknowledge.
static constexpr uint8_t MACK = 0b0011'0010; // Last data byte acknowledge.
static constexpr uint8_t SMAK = 0b0011'0011; // Last data byte acknowledge.
static constexpr uint8_t PRST = 0b0010'0001; // Does nothing.
};
struct Video {
void write(uint32_t value) {
const auto target = (value >> 24) & 0xfc;
switch(target) {
case 0x00: case 0x04: case 0x08: case 0x0c:
case 0x10: case 0x14: case 0x18: case 0x1c:
case 0x20: case 0x24: case 0x28: case 0x2c:
case 0x30: case 0x34: case 0x38: case 0x3c:
logger.error().append("TODO: Video palette logical colour %d to %03x", (target >> 2), value & 0x1fff);
break;
case 0x40:
logger.error().append("TODO: Video border colour to %03x", value & 0x1fff);
break;
case 0x44: case 0x48: case 0x4c:
logger.error().append("TODO: Cursor colour %d to %03x", (target - 0x44) >> 2, value & 0x1fff);
break;
case 0x60: case 0x64: case 0x68: case 0x6c:
case 0x70: case 0x74: case 0x78: case 0x7c:
logger.error().append("TODO: Stereo image register %d to %03x", (target - 0x60) >> 2, value & 0x7);
break;
case 0x80:
logger.error().append("TODO: Video horizontal period: %d", (value >> 14) & 0x3ff);
break;
case 0x84:
logger.error().append("TODO: Video horizontal sync width: %d", (value >> 14) & 0x3ff);
break;
case 0x88:
logger.error().append("TODO: Video horizontal border start: %d", (value >> 14) & 0x3ff);
break;
case 0x8c:
logger.error().append("TODO: Video horizontal display start: %d", (value >> 14) & 0x3ff);
break;
case 0x90:
logger.error().append("TODO: Video horizontal display end: %d", (value >> 14) & 0x3ff);
break;
case 0x94:
logger.error().append("TODO: Video horizontal border end: %d", (value >> 14) & 0x3ff);
break;
case 0x98:
logger.error().append("TODO: Video horizontal cursor end: %d", (value >> 14) & 0x3ff);
break;
case 0x9c:
logger.error().append("TODO: Video horizontal interlace: %d", (value >> 14) & 0x3ff);
break;
case 0xa0:
logger.error().append("TODO: Video vertical period: %d", (value >> 14) & 0x3ff);
break;
case 0xa4:
logger.error().append("TODO: Video vertical sync width: %d", (value >> 14) & 0x3ff);
break;
case 0xa8:
logger.error().append("TODO: Video vertical border start: %d", (value >> 14) & 0x3ff);
break;
case 0xac:
logger.error().append("TODO: Video vertical display start: %d", (value >> 14) & 0x3ff);
break;
case 0xb0:
logger.error().append("TODO: Video vertical display end: %d", (value >> 14) & 0x3ff);
break;
case 0xb4:
logger.error().append("TODO: Video vertical border end: %d", (value >> 14) & 0x3ff);
break;
case 0xb8:
logger.error().append("TODO: Video vertical cursor start: %d", (value >> 14) & 0x3ff);
break;
case 0xbc:
logger.error().append("TODO: Video vertical cursor end: %d", (value >> 14) & 0x3ff);
break;
case 0xc0:
logger.error().append("TODO: Sound frequency: %d", value & 0x7f);
break;
case 0xe0:
logger.error().append("TODO: video control: %08x", value);
break;
default:
logger.error().append("TODO: unrecognised VIDC write of %08x", value);
break;
}
}
};
// IRQ A flags
namespace IRQA {
// The first four of these are taken from the A500 documentation and may be inaccurate.
static constexpr uint8_t PrinterBusy = 0x01;
static constexpr uint8_t SerialRinging = 0x02;
static constexpr uint8_t PrinterAcknowledge = 0x04;
static constexpr uint8_t VerticalFlyback = 0x08;
static constexpr uint8_t PowerOnReset = 0x10;
static constexpr uint8_t Timer0 = 0x20;
static constexpr uint8_t Timer1 = 0x40;
static constexpr uint8_t SetAlways = 0x80;
}
// IRQ B flags
namespace IRQB {
// These are taken from the A3010 documentation.
static constexpr uint8_t PoduleFIQRequest = 0x01;
static constexpr uint8_t SoundBufferPointerUsed = 0x02;
static constexpr uint8_t SerialLine = 0x04;
static constexpr uint8_t IDE = 0x08;
static constexpr uint8_t FloppyDiscInterrupt = 0x10;
static constexpr uint8_t PoduleIRQRequest = 0x20;
static constexpr uint8_t KeyboardTransmitEmpty = 0x40;
static constexpr uint8_t KeyboardReceiveFull = 0x80;
}
// FIQ flags
namespace FIQ {
// These are taken from the A3010 documentation.
static constexpr uint8_t FloppyDiscData = 0x01;
static constexpr uint8_t SerialLine = 0x10;
static constexpr uint8_t PoduleFIQRequest = 0x40;
static constexpr uint8_t SetAlways = 0x80;
}
namespace InterruptRequests {
static constexpr int IRQ = 0x01;
static constexpr int FIQ = 0x02;
};
struct Interrupts {
int interrupt_mask() const {
return
((irq_a_.request() | irq_b_.request()) ? InterruptRequests::IRQ : 0) |
(fiq_.request() ? InterruptRequests::FIQ : 0);
}
template <int c>
bool tick_timer() {
if(!counters_[c].value && !counters_[c].reload) {
return false;
}
--counters_[c].value;
if(!counters_[c].value) {
counters_[c].value = counters_[c].reload;
switch(c) {
case 0: return irq_a_.apply(IRQA::Timer0);
case 1: return irq_a_.apply(IRQA::Timer1);
case 3: {
serial_.shift();
keyboard_.update();
const uint8_t events = serial_.events(IOCParty);
bool did_interrupt = false;
if(events & HalfDuplexSerial::Receive) {
did_interrupt |= irq_b_.apply(IRQB::KeyboardReceiveFull);
}
if(events & HalfDuplexSerial::Transmit) {
did_interrupt |= irq_b_.apply(IRQB::KeyboardTransmitEmpty);
}
return did_interrupt;
}
default: break;
}
// TODO: events for timers 2 (baud).
}
return false;
}
bool tick_timers() {
bool did_change_interrupts = false;
did_change_interrupts |= tick_timer<0>();
did_change_interrupts |= tick_timer<1>();
did_change_interrupts |= tick_timer<2>();
did_change_interrupts |= tick_timer<3>();
return did_change_interrupts;
}
static constexpr uint32_t AddressMask = 0x1f'ffff;
bool read(uint32_t address, uint8_t &value) {
const auto target = address & AddressMask;
value = 0xff;
switch(target) {
default:
logger.error().append("Unrecognised IOC read from %08x", address);
break;
case 0x3200000 & AddressMask:
value = control_ | 0xc0;
value &= ~(i2c_.clock() ? 2 : 0);
value &= ~(i2c_.data() ? 1 : 0);
// logger.error().append("IOC control read: C:%d D:%d", !(value & 2), !(value & 1));
return true;
case 0x3200004 & AddressMask:
value = serial_.input(IOCParty);
irq_b_.clear(IRQB::KeyboardReceiveFull);
logger.error().append("IOC keyboard receive: %02x", value);
return true;
// IRQ A.
case 0x3200010 & AddressMask:
value = irq_a_.status;
// logger.error().append("IRQ A status is %02x", value);
return true;
case 0x3200014 & AddressMask:
value = irq_a_.request();
logger.error().append("IRQ A request is %02x", value);
return true;
case 0x3200018 & AddressMask:
value = irq_a_.mask;
logger.error().append("IRQ A mask is %02x", value);
return true;
// IRQ B.
case 0x3200020 & AddressMask:
value = irq_b_.status;
// logger.error().append("IRQ B status is %02x", value);
return true;
case 0x3200024 & AddressMask:
value = irq_b_.request();
logger.error().append("IRQ B request is %02x", value);
return true;
case 0x3200028 & AddressMask:
value = irq_b_.mask;
logger.error().append("IRQ B mask is %02x", value);
return true;
// FIQ.
case 0x3200030 & AddressMask:
value = fiq_.status;
logger.error().append("FIQ status is %02x", value);
return true;
case 0x3200034 & AddressMask:
value = fiq_.request();
logger.error().append("FIQ request is %02x", value);
return true;
case 0x3200038 & AddressMask:
value = fiq_.mask;
logger.error().append("FIQ mask is %02x", value);
return true;
// Counters.
case 0x3200040 & AddressMask:
case 0x3200050 & AddressMask:
case 0x3200060 & AddressMask:
case 0x3200070 & AddressMask:
value = counters_[(target >> 4) - 0x4].output & 0xff;
// logger.error().append("%02x: Counter %d low is %02x", target, (target >> 4) - 0x4, value);
return true;
case 0x3200044 & AddressMask:
case 0x3200054 & AddressMask:
case 0x3200064 & AddressMask:
case 0x3200074 & AddressMask:
value = counters_[(target >> 4) - 0x4].output >> 8;
// logger.error().append("%02x: Counter %d high is %02x", target, (target >> 4) - 0x4, value);
return true;
}
return true;
}
bool write(uint32_t address, uint8_t value) {
const auto target = address & AddressMask;
switch(target) {
default:
logger.error().append("Unrecognised IOC write of %02x at %08x", value, address);
break;
case 0x320'0000 & AddressMask:
// TODO: does the rest of the control register relate to anything?
// logger.error().append("TODO: IOC control write: C:%d D:%d", !(value & 2), !(value & 1));
control_ = value;
i2c_.set_clock_data(!(value & 2), !(value & 1));
return true;
case 0x320'0004 & AddressMask:
logger.error().append("IOC keyboard transmit %02x", value);
serial_.output(IOCParty, value);
irq_b_.clear(IRQB::KeyboardTransmitEmpty);
return true;
case 0x320'0014 & AddressMask:
// b2: clear IF.
// b3: clear IR.
// b4: clear POR.
// b5: clear TM[0].
// b6: clear TM[1].
irq_a_.clear(value & 0x7c);
return true;
// Interrupts.
case 0x320'0018 & AddressMask: irq_a_.mask = value; return true;
case 0x320'0028 & AddressMask: irq_b_.mask = value; return true;
case 0x320'0038 & AddressMask: fiq_.mask = value; return true;
// Counters.
case 0x320'0040 & AddressMask:
case 0x320'0050 & AddressMask:
case 0x320'0060 & AddressMask:
case 0x320'0070 & AddressMask:
counters_[(target >> 4) - 0x4].reload = uint16_t(
(counters_[(target >> 4) - 0x4].reload & 0xff00) | value
);
return true;
case 0x320'0044 & AddressMask:
case 0x320'0054 & AddressMask:
case 0x320'0064 & AddressMask:
case 0x320'0074 & AddressMask:
counters_[(target >> 4) - 0x4].reload = uint16_t(
(counters_[(target >> 4) - 0x4].reload & 0x00ff) | (value << 8)
);
return true;
case 0x320'0048 & AddressMask:
case 0x320'0058 & AddressMask:
case 0x320'0068 & AddressMask:
case 0x320'0078 & AddressMask:
counters_[(target >> 4) - 0x4].value = counters_[(target >> 4) - 0x4].reload;
return true;
case 0x320'004c & AddressMask:
case 0x320'005c & AddressMask:
case 0x320'006c & AddressMask:
case 0x320'007c & AddressMask:
counters_[(target >> 4) - 0x4].output = counters_[(target >> 4) - 0x4].value;
return true;
case 0x327'0000 & AddressMask:
logger.error().append("TODO: exteded external podule space");
return true;
case 0x331'0000 & AddressMask:
logger.error().append("TODO: 1772 / disk write");
return true;
case 0x335'0000 & AddressMask:
logger.error().append("TODO: LS374 / printer data write");
return true;
case 0x335'0018 & AddressMask:
logger.error().append("TODO: latch B write: %02x", value);
return true;
case 0x335'0040 & AddressMask:
logger.error().append("TODO: latch A write: %02x", value);
return true;
case 0x335'0048 & AddressMask:
logger.error().append("TODO: latch C write: %02x", value);
return true;
case 0x336'0000 & AddressMask:
logger.error().append("TODO: podule interrupt request");
return true;
case 0x336'0004 & AddressMask:
logger.error().append("TODO: podule interrupt mask");
return true;
case 0x33a'0000 & AddressMask:
logger.error().append("TODO: 6854 / econet write");
return true;
case 0x33b'0000 & AddressMask:
logger.error().append("TODO: 6551 / serial line write");
return true;
}
return true;
}
Interrupts() : keyboard_(serial_) {
irq_a_.status = IRQA::SetAlways | IRQA::PowerOnReset;
irq_b_.status = 0x00;
fiq_.status = 0x80; // 'set always'.
i2c_.add_peripheral(&cmos_, 0xa0);
}
private:
// IRQA, IRQB and FIQ states.
struct Interrupt {
uint8_t status, mask;
uint8_t request() const {
return status & mask;
}
bool apply(uint8_t value) {
status |= value;
return status & mask;
}
void clear(uint8_t bits) {
status &= ~bits;
}
};
Interrupt irq_a_, irq_b_, fiq_;
// The IOCs four counters.
struct Counter {
uint16_t value;
uint16_t reload;
uint16_t output;
};
Counter counters_[4];
// The KART and keyboard beyond it.
HalfDuplexSerial serial_;
Keyboard keyboard_;
// The control register.
uint8_t control_ = 0xff;
// The I2C bus.
I2C::Bus i2c_;
CMOSRAM cmos_;
};
/// Primarily models the MEMC.
template <typename IOCWriteDelegateT>
struct Memory {
Memory(IOCWriteDelegateT &ioc_write_delegate) : ioc_write_delegate_(ioc_write_delegate) {}
int interrupt_mask() const {
return ioc_.interrupt_mask();
}
void set_rom(const std::vector<uint8_t> &rom) {
std::copy(
rom.begin(),
rom.begin() + static_cast<ptrdiff_t>(std::min(rom.size(), rom_.size())),
rom_.begin());
}
template <typename IntT>
uint32_t aligned(uint32_t address) {
if constexpr (std::is_same_v<IntT, uint32_t>) {
return address & static_cast<uint32_t>(~3);
}
return address;
}
template <typename IntT>
bool write(uint32_t address, IntT source, InstructionSet::ARM::Mode mode, bool) {
// User mode may only _write_ to logically-mapped RAM (subject to further testing below).
if(mode == InstructionSet::ARM::Mode::User && address >= 0x200'0000) {
return false;
}
switch(write_zones_[(address >> 21) & 31]) {
case Zone::DMAAndMEMC:
if((address & 0b1110'0000'0000'0000'0000) == 0b1110'0000'0000'0000'0000) {
// "The parameters are encoded into the processor address lines".
os_mode_ = address & (1 << 12);
sound_dma_enable_ = address & (1 << 11);
video_dma_enable_ = address & (1 << 10);
switch((address >> 8) & 3) {
default:
dynamic_ram_refresh_ = DynamicRAMRefresh::None;
break;
case 0b01:
case 0b11:
dynamic_ram_refresh_ = DynamicRAMRefresh((address >> 8) & 3);
break;
}
high_rom_access_time_ = ROMAccessTime((address >> 6) & 3);
low_rom_access_time_ = ROMAccessTime((address >> 4) & 3);
page_size_ = PageSize((address >> 2) & 3);
logger.info().append("MEMC Control: %08x -> OS:%d sound:%d video:%d refresh:%d high:%d low:%d size:%d", address, os_mode_, sound_dma_enable_, video_dma_enable_, dynamic_ram_refresh_, high_rom_access_time_, low_rom_access_time_, page_size_);
map_dirty_ = true;
return true;
} else {
logger.error().append("TODO: DMA/MEMC %08x to %08x", source, address);
}
break;
case Zone::LogicallyMappedRAM: {
const auto item = logical_ram<IntT, false>(address, mode);
if(!item) {
return false;
}
*item = source;
return true;
} break;
case Zone::IOControllers:
// TODO: have I overrestricted the value type for the IOC area?
ioc_.write(address, uint8_t(source));
ioc_write_delegate_.did_write_ioc();
return true;
case Zone::VideoController:
// TODO: handle byte writes correctly.
vidc_.write(source);
break;
case Zone::PhysicallyMappedRAM:
physical_ram<IntT>(address) = source;
return true;
case Zone::AddressTranslator:
// printf("Translator write at %08x; replaces %08x\n", address, pages_[address & 0x7f]);
pages_[address & 0x7f] = address;
map_dirty_ = true;
break;
default:
// printf("TODO: write of %08x to %08x [%lu]\n", source, address, sizeof(IntT));
break;
}
return true;
}
template <typename IntT>
bool read(uint32_t address, IntT &source, InstructionSet::ARM::Mode mode, bool) {
// User mode may only read logically-maped RAM and ROM.
if(mode == InstructionSet::ARM::Mode::User && address >= 0x200'0000 && address < 0x380'0000) {
return false;
}
switch (read_zones_[(address >> 21) & 31]) {
case Zone::PhysicallyMappedRAM:
source = physical_ram<IntT>(address);
return true;
case Zone::LogicallyMappedRAM: {
if(!has_moved_rom_) { // TODO: maintain this state in the zones table.
source = high_rom<IntT>(address);
return true;
}
const auto item = logical_ram<IntT, true>(address, mode);
if(!item) {
return false;
}
source = *item;
return true;
} break;
case Zone::LowROM:
// logger.error().append("TODO: Low ROM read from %08x", address);
source = IntT(~0);
return true;
case Zone::HighROM:
// Real test is: require A24=A25=0, then A25=1.
// TODO: as above, move this test into the zones tables.
has_moved_rom_ = true;
source = high_rom<IntT>(address);
return true;
case Zone::IOControllers: {
if constexpr (std::is_same_v<IntT, uint8_t>) {
ioc_.read(address, source);
return true;
} else {
// TODO: generalise this adaptation of an 8-bit device to the 32-bit bus, which probably isn't right anyway.
uint8_t value;
ioc_.read(address, value);
source = value;
return true;
}
}
default:
logger.error().append("TODO: read from %08x", address);
break;
}
source = 0;
return false;
}
bool tick_timers() {
return ioc_.tick_timers();
}
private:
bool has_moved_rom_ = false;
std::array<uint8_t, 4*1024*1024> ram_{};
std::array<uint8_t, 2*1024*1024> rom_;
Interrupts ioc_;
Video vidc_;
IOCWriteDelegateT &ioc_write_delegate_;
template <typename IntT>
IntT &physical_ram(uint32_t address) {
address = aligned<IntT>(address);
address &= (ram_.size() - 1);
return *reinterpret_cast<IntT *>(&ram_[address]);
}
template <typename IntT>
IntT &high_rom(uint32_t address) {
address = aligned<IntT>(address);
return *reinterpret_cast<IntT *>(&rom_[address & (rom_.size() - 1)]);
}
static constexpr std::array<Zone, 0x20> read_zones_ = zones(true);
static constexpr std::array<Zone, 0x20> write_zones_ = zones(false);
// Control register values.
bool os_mode_ = false;
bool sound_dma_enable_ = false;
bool video_dma_enable_ = false; // "Unaffected" by reset, so here picked arbitrarily.
enum class DynamicRAMRefresh {
None = 0b00,
DuringFlyback = 0b01,
Continuous = 0b11,
} dynamic_ram_refresh_ = DynamicRAMRefresh::None; // State at reset is undefined; constrain to a valid enum value.
enum class ROMAccessTime {
ns450 = 0b00,
ns325 = 0b01,
ns200 = 0b10,
ns200with60nsNibble = 0b11,
} high_rom_access_time_ = ROMAccessTime::ns450, low_rom_access_time_ = ROMAccessTime::ns450;
enum class PageSize {
kb4 = 0b00,
kb8 = 0b01,
kb16 = 0b10,
kb32 = 0b11,
} page_size_ = PageSize::kb4;
// Address translator.
//
// MEMC contains one entry per a physical page number, indicating where it goes logically.
// Any logical access is tested against all 128 mappings. So that's backwards compared to
// the ideal for an emulator, which would map from logical to physical, even if a lot more
// compact — there are always 128 physical pages; there are up to 8192 logical pages.
//
// So captured here are both the physical -> logical map as representative of the real
// hardware, and the reverse logical -> physical map, which is built (and rebuilt, and rebuilt)
// from the other.
// Physical to logical mapping.
std::array<uint32_t, 128> pages_{};
// Logical to physical mapping.
struct MappedPage {
uint8_t *target = nullptr;
uint8_t protection_level = 0;
};
std::array<MappedPage, 8192> mapping_;
bool map_dirty_ = true;
template <typename IntT, bool is_read>
IntT *logical_ram(uint32_t address, InstructionSet::ARM::Mode mode) {
// Possibly TODO: this recompute-if-dirty flag is supposed to ameliorate for an expensive
// mapping process. It can be eliminated when the process is improved.
if(map_dirty_) {
update_mapping();
map_dirty_ = false;
}
address = aligned<IntT>(address);
address &= 0x1ff'ffff;
size_t page;
// TODO: eliminate switch here.
switch(page_size_) {
default:
case PageSize::kb4:
page = address >> 12;
address &= 0x0fff;
break;
case PageSize::kb8:
page = address >> 13;
address &= 0x1fff;
break;
case PageSize::kb16:
page = address >> 14;
address &= 0x3fff;
break;
case PageSize::kb32:
page = address >> 15;
address &= 0x7fff;
break;
}
if(!mapping_[page].target) {
return nullptr;
}
// TODO: eliminate switch here.
// Top of my head idea: is_read, is_user and is_os_mode make three bits, so
// keep a one-byte bitmap of permitted accesses rather than the raw protection
// level?
switch(mapping_[page].protection_level) {
case 0b00: break;
case 0b01:
if(!is_read && mode == InstructionSet::ARM::Mode::User) {
return nullptr;
}
break;
default:
if(mode == InstructionSet::ARM::Mode::User) {
return nullptr;
}
if(!is_read && !os_mode_) {
return nullptr;
}
break;
}
return reinterpret_cast<IntT *>(mapping_[page].target + address);
}
void update_mapping() {
// For each physical page, project it into logical space.
switch(page_size_) {
default:
case PageSize::kb4: update_mapping<PageSize::kb4>(); break;
case PageSize::kb8: update_mapping<PageSize::kb8>(); break;
case PageSize::kb16: update_mapping<PageSize::kb16>(); break;
case PageSize::kb32: update_mapping<PageSize::kb32>(); break;
}
}
template <PageSize size>
void update_mapping() {
// Clear all logical mappings.
std::fill(mapping_.begin(), mapping_.end(), MappedPage{});
// For each physical page, project it into logical space
// and store it.
for(const auto page: pages_) {
uint32_t physical, logical;
switch(size) {
case PageSize::kb4:
// 4kb:
// A[6:0] -> PPN[6:0]
// A[11:10] -> LPN[12:11]; A[22:12] -> LPN[10:0] i.e. 8192 logical pages
physical = page & BitMask<6, 0>::value;
physical <<= 12;
logical = (page & BitMask<11, 10>::value) << 1;
logical |= (page & BitMask<22, 12>::value) >> 12;
break;
case PageSize::kb8:
// 8kb:
// A[0] -> PPN[6]; A[6:1] -> PPN[5:0]
// A[11:10] -> LPN[11:10]; A[22:13] -> LPN[9:0] i.e. 4096 logical pages
physical = (page & BitMask<0, 0>::value) << 6;
physical |= (page & BitMask<6, 1>::value) >> 1;
physical <<= 13;
logical = page & BitMask<11, 10>::value;
logical |= (page & BitMask<22, 13>::value) >> 13;
break;
case PageSize::kb16:
// 16kb:
// A[1:0] -> PPN[6:5]; A[6:2] -> PPN[4:0]
// A[11:10] -> LPN[10:9]; A[22:14] -> LPN[8:0] i.e. 2048 logical pages
physical = (page & BitMask<1, 0>::value) << 5;
physical |= (page & BitMask<6, 2>::value) >> 2;
physical <<= 14;
logical = (page & BitMask<11, 10>::value) >> 1;
logical |= (page & BitMask<22, 14>::value) >> 14;
break;
case PageSize::kb32:
// 32kb:
// A[1] -> PPN[6]; A[2] -> PPN[5]; A[0] -> PPN[4]; A[6:3] -> PPN[3:0]
// A[11:10] -> LPN[9:8]; A[22:15] -> LPN[7:0] i.e. 1024 logical pages
physical = (page & BitMask<1, 1>::value) << 5;
physical |= (page & BitMask<2, 2>::value) << 3;
physical |= (page & BitMask<0, 0>::value) << 4;
physical |= (page & BitMask<6, 3>::value) >> 3;
physical <<= 15;
logical = (page & BitMask<11, 10>::value) >> 2;
logical |= (page & BitMask<22, 15>::value) >> 15;
break;
}
// printf("%08x => physical %d -> logical %d\n", page, (physical >> 15), logical);
// TODO: consider clashes.
// TODO: what if there's less than 4mb present?
mapping_[logical].target = &ram_[physical];
mapping_[logical].protection_level = (page >> 8) & 3;
}
}
};
class ConcreteMachine:
public Machine,
public MachineTypes::MediaTarget,
public MachineTypes::TimedMachine,
public MachineTypes::ScanProducer
{
// TODO: pick a sensible clock rate; this is just code for '24 MIPS, please'.
static constexpr int ClockRate = 24'000'000;
// Timers tick at 2Mhz, so figure out the proper divider for that.
static constexpr int TimerTarget = ClockRate / 2'000'000;
int timer_divider_ = TimerTarget;
public:
ConcreteMachine(
const Analyser::Static::Target &target,
const ROMMachine::ROMFetcher &rom_fetcher
) : executor_(*this) {
set_clock_rate(ClockRate);
constexpr ROM::Name risc_os = ROM::Name::AcornRISCOS319;
ROM::Request request(risc_os);
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
executor_.bus.set_rom(roms.find(risc_os)->second);
insert_media(target.media);
}
void did_write_ioc() {
test_interrupts();
}
private:
// MARK: - ScanProducer.
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
(void)scan_target;
}
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
return Outputs::Display::ScanStatus();
}
std::array<uint32_t, 10> pc_history;
std::size_t pc_history_ptr = 0;
uint32_t instr_count = 0;
// MARK: - TimedMachine.
void run_for(Cycles cycles) override {
static uint32_t last_pc = 0;
static bool log = false;
auto instructions = cycles.as<int>();
while(instructions) {
auto run_length = std::min(timer_divider_, instructions);
instructions -= run_length;
timer_divider_ -= run_length;
while(run_length--) {
uint32_t instruction;
pc_history[pc_history_ptr] = executor_.pc();
pc_history_ptr = (pc_history_ptr + 1) % pc_history.size();
if(!executor_.bus.read(executor_.pc(), instruction, executor_.registers().mode(), false)) {
logger.info().append("Prefetch abort at %08x; last good was at %08x", executor_.pc(), last_pc);
executor_.prefetch_abort();
// TODO: does a double abort cause a reset?
executor_.bus.read(executor_.pc(), instruction, executor_.registers().mode(), false);
} else {
last_pc = executor_.pc();
}
// TODO: pipeline prefetch?
if(executor_.pc() == 0x03810bd8) {
printf("At %08x; after last PC %08x and %zu ago was %08x\n", executor_.pc(), pc_history[(pc_history_ptr - 2 + pc_history.size()) % pc_history.size()], pc_history.size(), pc_history[pc_history_ptr]);
}
log = executor_.pc() == 0x03810bd8;
if(log) {
InstructionSet::ARM::Disassembler<arm_model> disassembler;
InstructionSet::ARM::dispatch<arm_model>(instruction, disassembler);
auto info = logger.info();
info.append("[%d] %08x: %08x\t\t%s\t prior:[",
instr_count,
executor_.pc(),
instruction,
disassembler.last().to_string(executor_.pc()).c_str());
for(uint32_t c = 0; c < 15; c++) {
info.append("r%d:%08x ", c, executor_.registers()[c]);
}
info.append("]");
}
// logger.info().append("%08x: %08x", executor_.pc(), instruction);
InstructionSet::ARM::execute(instruction, executor_);
++instr_count;
// if(
// executor_.pc() > 0x038021d0 &&
// last_r1 != executor_.registers()[1]
// ||
// (
// last_link != executor_.registers()[14] ||
// last_r0 != executor_.registers()[0] ||
// last_r10 != executor_.registers()[10] ||
// last_r1 != executor_.registers()[1]
// )
// ) {
// logger.info().append("%08x modified R14 to %08x; R0 to %08x; R10 to %08x; R1 to %08x",
// last_pc,
// executor_.registers()[14],
// executor_.registers()[0],
// executor_.registers()[10],
// executor_.registers()[1]
// );
// logger.info().append("%08x modified R1 to %08x",
// last_pc,
// executor_.registers()[1]
// );
// last_link = executor_.registers()[14];
// last_r0 = executor_.registers()[0];
// last_r10 = executor_.registers()[10];
// last_r1 = executor_.registers()[1];
// }
}
if(log) {
printf("");
}
if(!timer_divider_) {
timer_divider_ = TimerTarget;
if(executor_.bus.tick_timers()) {
test_interrupts();
}
}
}
}
void test_interrupts() {
using Exception = InstructionSet::ARM::Registers::Exception;
const int requests = executor_.bus.interrupt_mask();
if((requests & InterruptRequests::FIQ) && executor_.registers().interrupt<Exception::FIQ>()) {
return;
}
if(requests & InterruptRequests::IRQ) {
executor_.registers().interrupt<Exception::IRQ>();
}
}
// MARK: - MediaTarget
bool insert_media(const Analyser::Static::Media &) override {
// int c = 0;
// for(auto &disk : media.disks) {
// fdc_.set_disk(disk, c);
// c++;
// if(c == 4) break;
// }
// return true;
return false;
}
// MARK: - ARM execution
static constexpr auto arm_model = InstructionSet::ARM::Model::ARMv2;
InstructionSet::ARM::Executor<arm_model, Memory<ConcreteMachine>> executor_;
};
}
using namespace Archimedes;
std::unique_ptr<Machine> Machine::Archimedes(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
return std::make_unique<ConcreteMachine>(*target, rom_fetcher);
}