1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Storage/Disk/DiskController.cpp
2017-08-15 22:06:58 -04:00

233 lines
6.8 KiB
C++

//
// DiskController.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/07/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "DiskController.hpp"
#include "UnformattedTrack.hpp"
#include "../../NumberTheory/Factors.hpp"
#include <cassert>
using namespace Storage::Disk;
Controller::Controller(Cycles clock_rate, int clock_rate_multiplier, int revolutions_per_minute) :
clock_rate_(clock_rate.as_int() * clock_rate_multiplier),
clock_rate_multiplier_(clock_rate_multiplier),
rotational_multiplier_(60, revolutions_per_minute),
cycles_since_index_hole_(0),
motor_is_on_(false),
is_reading_(true),
TimedEventLoop((unsigned int)(clock_rate.as_int() * clock_rate_multiplier)) {
// seed this class with a PLL, any PLL, so that it's safe to assume non-nullptr later
Time one(1);
set_expected_bit_length(one);
}
void Controller::setup_track() {
track_ = drive_->get_track();
if(!track_) {
track_.reset(new UnformattedTrack);
}
Time offset;
Time track_time_now = get_time_into_track();
assert(track_time_now >= Time(0) && current_event_.length <= Time(1));
Time time_found = track_->seek_to(track_time_now);
assert(time_found >= Time(0) && time_found <= track_time_now);
offset = track_time_now - time_found;
get_next_event(offset);
}
void Controller::run_for(const Cycles cycles) {
Time zero(0);
if(drive_ && drive_->has_disk() && motor_is_on_) {
if(!track_) setup_track();
int number_of_cycles = clock_rate_multiplier_ * cycles.as_int();
while(number_of_cycles) {
int cycles_until_next_event = (int)get_cycles_until_next_event();
int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles);
if(!is_reading_ && cycles_until_bits_written_ > zero) {
int write_cycles_target = (int)cycles_until_bits_written_.get_unsigned_int();
if(cycles_until_bits_written_.length % cycles_until_bits_written_.clock_rate) write_cycles_target++;
cycles_to_run_for = std::min(cycles_to_run_for, write_cycles_target);
}
cycles_since_index_hole_ += (unsigned int)cycles_to_run_for;
number_of_cycles -= cycles_to_run_for;
if(is_reading_) {
pll_->run_for(Cycles(cycles_to_run_for));
} else {
if(cycles_until_bits_written_ > zero) {
Storage::Time cycles_to_run_for_time(cycles_to_run_for);
if(cycles_until_bits_written_ <= cycles_to_run_for_time) {
process_write_completed();
if(cycles_until_bits_written_ <= cycles_to_run_for_time)
cycles_until_bits_written_.set_zero();
else
cycles_until_bits_written_ -= cycles_to_run_for_time;
} else {
cycles_until_bits_written_ -= cycles_to_run_for_time;
}
}
}
TimedEventLoop::run_for(Cycles(cycles_to_run_for));
}
}
}
#pragma mark - Track timed event loop
void Controller::get_next_event(const Time &duration_already_passed) {
if(track_) {
current_event_ = track_->get_next_event();
} else {
current_event_.length.length = 1;
current_event_.length.clock_rate = 1;
current_event_.type = Track::Event::IndexHole;
}
// divide interval, which is in terms of a single rotation of the disk, by rotation speed to
// convert it into revolutions per second; this is achieved by multiplying by rotational_multiplier_
assert(current_event_.length <= Time(1) && current_event_.length >= Time(0));
Time interval = (current_event_.length - duration_already_passed) * rotational_multiplier_;
set_next_event_time_interval(interval);
}
void Controller::process_next_event()
{
switch(current_event_.type) {
case Track::Event::FluxTransition:
if(is_reading_) pll_->add_pulse();
break;
case Track::Event::IndexHole:
// printf("%p %d [/%d = %d]\n", this, cycles_since_index_hole_, clock_rate_multiplier_, cycles_since_index_hole_ / clock_rate_multiplier_);
cycles_since_index_hole_ = 0;
process_index_hole();
break;
}
get_next_event(Time(0));
}
Storage::Time Controller::get_time_into_track() {
// this is proportion of a second
Time result(cycles_since_index_hole_, 8000000 * clock_rate_multiplier_);
result /= rotational_multiplier_;
result.simplify();
return result;
}
#pragma mark - Writing
void Controller::begin_writing(bool clamp_to_index_hole) {
is_reading_ = false;
clamp_writing_to_index_hole_ = clamp_to_index_hole;
write_segment_.length_of_a_bit = bit_length_ / rotational_multiplier_;
write_segment_.data.clear();
write_segment_.number_of_bits = 0;
write_start_time_ = get_time_into_track();
}
void Controller::write_bit(bool value) {
bool needs_new_byte = !(write_segment_.number_of_bits&7);
if(needs_new_byte) write_segment_.data.push_back(0);
if(value) write_segment_.data[write_segment_.number_of_bits >> 3] |= 0x80 >> (write_segment_.number_of_bits & 7);
write_segment_.number_of_bits++;
cycles_until_bits_written_ += cycles_per_bit_;
}
void Controller::end_writing() {
is_reading_ = true;
if(!patched_track_) {
// Avoid creating a new patched track if this one is already patched
patched_track_ = std::dynamic_pointer_cast<PCMPatchedTrack>(track_);
if(!patched_track_) {
patched_track_.reset(new PCMPatchedTrack(track_));
}
}
patched_track_->add_segment(write_start_time_, write_segment_, clamp_writing_to_index_hole_);
cycles_since_index_hole_ %= 8000000 * clock_rate_multiplier_;
invalidate_track(); // TEMPORARY: to force a seek
}
#pragma mark - PLL control and delegate
void Controller::set_expected_bit_length(Time bit_length) {
bit_length_ = bit_length;
bit_length_.simplify();
cycles_per_bit_ = Storage::Time(clock_rate_) * bit_length;
cycles_per_bit_.simplify();
// this conversion doesn't need to be exact because there's a lot of variation to be taken
// account of in rotation speed, air turbulence, etc, so a direct conversion will do
int clocks_per_bit = (int)cycles_per_bit_.get_unsigned_int();
pll_.reset(new DigitalPhaseLockedLoop(clocks_per_bit, 3));
pll_->set_delegate(this);
}
void Controller::digital_phase_locked_loop_output_bit(int value) {
process_input_bit(value, (unsigned int)cycles_since_index_hole_);
}
#pragma mark - Drive actions
bool Controller::get_is_track_zero() {
if(!drive_) return false;
return drive_->get_is_track_zero();
}
bool Controller::get_drive_is_ready() {
if(!drive_) return false;
return drive_->has_disk();
}
bool Controller::get_drive_is_read_only() {
if(!drive_) return false;
return drive_->get_is_read_only();
}
void Controller::step(int direction) {
invalidate_track();
if(drive_) drive_->step(direction);
}
void Controller::set_motor_on(bool motor_on) {
motor_is_on_ = motor_on;
}
bool Controller::get_motor_on() {
return motor_is_on_;
}
void Controller::set_drive(std::shared_ptr<Drive> drive) {
if(drive_ != drive) {
invalidate_track();
drive_ = drive;
}
}
void Controller::invalidate_track() {
track_ = nullptr;
if(patched_track_) {
drive_->set_track(patched_track_);
patched_track_ = nullptr;
}
}
void Controller::process_write_completed() {}