1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-04 18:29:40 +00:00
CLK/Machines/PCCompatible/DMA.hpp
2023-12-01 09:34:31 -05:00

233 lines
5.6 KiB
C++

//
// DMA.hpp
// Clock Signal
//
// Created by Thomas Harte on 21/11/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef DMA_hpp
#define DMA_hpp
#include "../../Numeric/RegisterSizes.hpp"
namespace PCCompatible {
class i8237 {
public:
void flip_flop_reset() {
next_access_low_ = true;
}
void mask_reset() {
for(auto &channel : channels_) {
channel.mask = false;
}
}
void master_reset() {
flip_flop_reset();
for(auto &channel : channels_) {
channel.mask = true;
channel.transfer_complete = true;
channel.request = false;
}
}
template <int address>
void write(uint8_t value) {
constexpr int channel = (address >> 1) & 3;
constexpr bool is_count = address & 1;
next_access_low_ ^= true;
if(next_access_low_) {
if constexpr (is_count) {
channels_[channel].count.halves.high = value;
} else {
channels_[channel].address.halves.high = value;
}
} else {
if constexpr (is_count) {
channels_[channel].count.halves.low = value;
} else {
channels_[channel].address.halves.low = value;
}
}
}
template <int address>
uint8_t read() {
constexpr int channel = (address >> 1) & 3;
constexpr bool is_count = address & 1;
next_access_low_ ^= true;
if(next_access_low_) {
if constexpr (is_count) {
return channels_[channel].count.halves.high;
} else {
return channels_[channel].address.halves.high;
}
} else {
if constexpr (is_count) {
return channels_[channel].count.halves.low;
} else {
return channels_[channel].address.halves.low;
}
}
}
void set_reset_mask(uint8_t value) {
channels_[value & 3].mask = value & 4;
}
void set_reset_request(uint8_t value) {
channels_[value & 3].request = value & 4;
}
void set_mask(uint8_t value) {
channels_[0].mask = value & 1;
channels_[1].mask = value & 2;
channels_[2].mask = value & 4;
channels_[3].mask = value & 8;
}
void set_mode(uint8_t value) {
channels_[value & 3].transfer = Channel::Transfer((value >> 2) & 3);
channels_[value & 3].autoinitialise = value & 0x10;
channels_[value & 3].address_decrement = value & 0x20;
channels_[value & 3].mode = Channel::Mode(value >> 6);
}
void set_command(uint8_t value) {
enable_memory_to_memory_ = value & 0x01;
enable_channel0_address_hold_ = value & 0x02;
enable_controller_ = value & 0x04;
compressed_timing_ = value & 0x08;
rotating_priority_ = value & 0x10;
extended_write_selection_ = value & 0x20;
dreq_active_low_ = value & 0x40;
dack_sense_active_high_ = value & 0x80;
}
uint8_t status() {
const uint8_t result =
(channels_[0].transfer_complete ? 0x01 : 0x00) |
(channels_[1].transfer_complete ? 0x02 : 0x00) |
(channels_[2].transfer_complete ? 0x04 : 0x00) |
(channels_[3].transfer_complete ? 0x08 : 0x00) |
(channels_[0].request ? 0x10 : 0x00) |
(channels_[1].request ? 0x20 : 0x00) |
(channels_[2].request ? 0x40 : 0x00) |
(channels_[3].request ? 0x80 : 0x00);
for(auto &channel : channels_) {
channel.transfer_complete = false;
}
return result;
}
//
// Interface for reading/writing via DMA.
//
static constexpr auto NotAvailable = uint32_t(~0);
/// Provides the next target address for @c channel if performing either a write (if @c is_write is @c true) or read (otherwise).
///
/// @returns Either a 16-bit address or @c NotAvailable if the requested channel isn't set up to perform a read or write at present.
uint32_t access(size_t channel, bool is_write) {
if(channels_[channel].transfer_complete) {
return NotAvailable;
}
if(is_write && channels_[channel].transfer != Channel::Transfer::Write) {
return NotAvailable;
}
if(!is_write && channels_[channel].transfer != Channel::Transfer::Read) {
return NotAvailable;
}
const auto address = channels_[channel].address.full;
channels_[channel].address.full += channels_[channel].address_decrement ? -1 : 1;
--channels_[channel].count.full;
channels_[channel].transfer_complete = (channels_[channel].count.full == 0xffff);
if(channels_[channel].transfer_complete) {
// TODO: _something_ with mode.
}
return address;
}
private:
// Low/high byte latch.
bool next_access_low_ = true;
// Various fields set by the command register.
bool enable_memory_to_memory_ = false;
bool enable_channel0_address_hold_ = false;
bool enable_controller_ = false;
bool compressed_timing_ = false;
bool rotating_priority_ = false;
bool extended_write_selection_ = false;
bool dreq_active_low_ = false;
bool dack_sense_active_high_ = false;
// Per-channel state.
struct Channel {
bool mask = false;
enum class Transfer {
Verify, Write, Read, Invalid
} transfer = Transfer::Verify;
bool autoinitialise = false;
bool address_decrement = false;
enum class Mode {
Demand, Single, Block, Cascade
} mode = Mode::Demand;
bool request = false;
bool transfer_complete = false;
CPU::RegisterPair16 address, count;
};
std::array<Channel, 4> channels_;
};
class DMAPages {
public:
template <int index>
void set_page(uint8_t value) {
pages_[page_for_index(index)] = value;
}
template <int index>
uint8_t page() {
return pages_[page_for_index(index)];
}
uint8_t channel_page(size_t channel) {
return pages_[channel];
}
private:
uint8_t pages_[8];
constexpr int page_for_index(int index) {
switch(index) {
case 7: return 0;
case 3: return 1;
case 1: return 2;
case 2: return 3;
default:
case 0: return 4;
case 4: return 5;
case 5: return 6;
case 6: return 7;
}
}
};
}
#endif /* DMA_hpp */