1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-29 00:29:34 +00:00
CLK/Components/AY38910/AY38910.cpp
Thomas Harte 48737a32a7 Introduces formal setting of the output volume to SampleSource.
Previously every output device was making its own decision. Which is increasingly less sustainable due to the CompoundSource.
2018-03-09 13:23:18 -05:00

286 lines
7.9 KiB
C++

//
// AY-3-8910.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/10/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "AY38910.hpp"
#include <cmath>
using namespace GI::AY38910;
AY38910::AY38910(Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {
// set up envelope lookup tables
for(int c = 0; c < 16; c++) {
for(int p = 0; p < 32; p++) {
switch(c) {
case 0: case 1: case 2: case 3: case 9:
envelope_shapes_[c][p] = (p < 16) ? (p^0xf) : 0;
envelope_overflow_masks_[c] = 0x1f;
break;
case 4: case 5: case 6: case 7: case 15:
envelope_shapes_[c][p] = (p < 16) ? p : 0;
envelope_overflow_masks_[c] = 0x1f;
break;
case 8:
envelope_shapes_[c][p] = (p & 0xf) ^ 0xf;
envelope_overflow_masks_[c] = 0x00;
break;
case 12:
envelope_shapes_[c][p] = (p & 0xf);
envelope_overflow_masks_[c] = 0x00;
break;
case 10:
envelope_shapes_[c][p] = (p & 0xf) ^ ((p < 16) ? 0xf : 0x0);
envelope_overflow_masks_[c] = 0x00;
break;
case 14:
envelope_shapes_[c][p] = (p & 0xf) ^ ((p < 16) ? 0x0 : 0xf);
envelope_overflow_masks_[c] = 0x00;
break;
case 11:
envelope_shapes_[c][p] = (p < 16) ? (p^0xf) : 0xf;
envelope_overflow_masks_[c] = 0x1f;
break;
case 13:
envelope_shapes_[c][p] = (p < 16) ? p : 0xf;
envelope_overflow_masks_[c] = 0x1f;
break;
}
}
}
set_sample_volume_range(0);
}
void AY38910::set_sample_volume_range(std::int16_t range) {
// set up volume lookup table
const float max_volume = static_cast<float>(range) / 3.0f; // As there are three channels.
const float root_two = sqrtf(2.0f);
for(int v = 0; v < 16; v++) {
volumes_[v] = static_cast<int>(max_volume / powf(root_two, static_cast<float>(v ^ 0xf)));
}
volumes_[0] = 0;
evaluate_output_volume();
}
void AY38910::get_samples(std::size_t number_of_samples, int16_t *target) {
std::size_t c = 0;
while((master_divider_&7) && c < number_of_samples) {
target[c] = output_volume_;
master_divider_++;
c++;
}
while(c < number_of_samples) {
#define step_channel(c) \
if(tone_counters_[c]) tone_counters_[c]--;\
else {\
tone_outputs_[c] ^= 1;\
tone_counters_[c] = tone_periods_[c];\
}
// update the tone channels
step_channel(0);
step_channel(1);
step_channel(2);
#undef step_channel
// ... the noise generator. This recomputes the new bit repeatedly but harmlessly, only shifting
// it into the official 17 upon divider underflow.
if(noise_counter_) noise_counter_--;
else {
noise_counter_ = noise_period_;
noise_output_ ^= noise_shift_register_&1;
noise_shift_register_ |= ((noise_shift_register_ ^ (noise_shift_register_ >> 3))&1) << 17;
noise_shift_register_ >>= 1;
}
// ... and the envelope generator. Table based for pattern lookup, with a 'refill' step — a way of
// implementing non-repeating patterns by locking them to table position 0x1f.
if(envelope_divider_) envelope_divider_--;
else {
envelope_divider_ = envelope_period_;
envelope_position_ ++;
if(envelope_position_ == 32) envelope_position_ = envelope_overflow_masks_[output_registers_[13]];
}
evaluate_output_volume();
for(int ic = 0; ic < 8 && c < number_of_samples; ic++) {
target[c] = output_volume_;
c++;
master_divider_++;
}
}
master_divider_ &= 7;
}
void AY38910::evaluate_output_volume() {
int envelope_volume = envelope_shapes_[output_registers_[13]][envelope_position_];
// The output level for a channel is:
// 1 if neither tone nor noise is enabled;
// 0 if either tone or noise is enabled and its value is low.
// The tone/noise enable bits use inverse logic — 0 = on, 1 = off — permitting the OR logic below.
#define tone_level(c, tone_bit) (tone_outputs_[c] | (output_registers_[7] >> tone_bit))
#define noise_level(c, noise_bit) (noise_output_ | (output_registers_[7] >> noise_bit))
#define level(c, tone_bit, noise_bit) tone_level(c, tone_bit) & noise_level(c, noise_bit) & 1
const int channel_levels[3] = {
level(0, 0, 3),
level(1, 1, 4),
level(2, 2, 5),
};
#undef level
// Channel volume is a simple selection: if the bit at 0x10 is set, use the envelope volume; otherwise use the lower four bits
#define channel_volume(c) \
((output_registers_[c] >> 4)&1) * envelope_volume + (((output_registers_[c] >> 4)&1)^1) * (output_registers_[c]&0xf)
const int volumes[3] = {
channel_volume(8),
channel_volume(9),
channel_volume(10)
};
#undef channel_volume
// Mix additively.
output_volume_ = static_cast<int16_t>(
volumes_[volumes[0]] * channel_levels[0] +
volumes_[volumes[1]] * channel_levels[1] +
volumes_[volumes[2]] * channel_levels[2]
);
}
bool AY38910::is_zero_level() {
// Confirm that the AY is trivially at the zero level if all three volume controls are set to fixed zero.
return output_registers_[0x8] == 0 && output_registers_[0x9] == 0 && output_registers_[0xa] == 0;
}
// MARK: - Register manipulation
void AY38910::select_register(uint8_t r) {
selected_register_ = r;
}
void AY38910::set_register_value(uint8_t value) {
if(selected_register_ > 15) return;
registers_[selected_register_] = value;
if(selected_register_ < 14) {
int selected_register = selected_register_;
task_queue_.defer([=] () {
uint8_t masked_value = value;
switch(selected_register) {
case 0: case 2: case 4:
case 1: case 3: case 5: {
int channel = selected_register >> 1;
if(selected_register & 1)
tone_periods_[channel] = (tone_periods_[channel] & 0xff) | static_cast<uint16_t>((value&0xf) << 8);
else
tone_periods_[channel] = (tone_periods_[channel] & ~0xff) | value;
}
break;
case 6:
noise_period_ = value & 0x1f;
break;
case 11:
envelope_period_ = (envelope_period_ & ~0xff) | value;
break;
case 12:
envelope_period_ = (envelope_period_ & 0xff) | static_cast<int>(value << 8);
break;
case 13:
masked_value &= 0xf;
envelope_position_ = 0;
break;
}
output_registers_[selected_register] = masked_value;
evaluate_output_volume();
});
} else {
if(port_handler_) port_handler_->set_port_output(selected_register_ == 15, value);
}
}
uint8_t AY38910::get_register_value() {
// This table ensures that bits that aren't defined within the AY are returned as 0s
// when read, conforming to CPC-sourced unit tests.
const uint8_t register_masks[16] = {
0xff, 0x0f, 0xff, 0x0f, 0xff, 0x0f, 0x1f, 0xff,
0x1f, 0x1f, 0x1f, 0xff, 0xff, 0x0f, 0xff, 0xff
};
if(selected_register_ > 15) return 0xff;
switch(selected_register_) {
default: return registers_[selected_register_] & register_masks[selected_register_];
case 14: return (registers_[0x7] & 0x40) ? registers_[14] : port_inputs_[0];
case 15: return (registers_[0x7] & 0x80) ? registers_[15] : port_inputs_[1];
}
}
// MARK: - Port handling
uint8_t AY38910::get_port_output(bool port_b) {
return registers_[port_b ? 15 : 14];
}
// MARK: - Bus handling
void AY38910::set_port_handler(PortHandler *handler) {
port_handler_ = handler;
}
void AY38910::set_data_input(uint8_t r) {
data_input_ = r;
update_bus();
}
uint8_t AY38910::get_data_output() {
if(control_state_ == Read && selected_register_ >= 14) {
if(port_handler_) {
return port_handler_->get_port_input(selected_register_ == 15);
} else {
return 0xff;
}
}
return data_output_;
}
void AY38910::set_control_lines(ControlLines control_lines) {
switch(static_cast<int>(control_lines)) {
default: control_state_ = Inactive; break;
case static_cast<int>(BDIR | BC2 | BC1):
case BDIR:
case BC1: control_state_ = LatchAddress; break;
case static_cast<int>(BC2 | BC1): control_state_ = Read; break;
case static_cast<int>(BDIR | BC2): control_state_ = Write; break;
}
update_bus();
}
void AY38910::update_bus() {
switch(control_state_) {
default: break;
case LatchAddress: select_register(data_input_); break;
case Write: set_register_value(data_input_); break;
case Read: data_output_ = get_register_value(); break;
}
}