1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 20:31:36 +00:00
CLK/Machines/MSX/MSX.cpp
2018-05-13 15:43:03 -04:00

691 lines
21 KiB
C++

//
// MSX.cpp
// Clock Signal
//
// Created by Thomas Harte on 24/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "MSX.hpp"
#include "DiskROM.hpp"
#include "Keyboard.hpp"
#include "ROMSlotHandler.hpp"
#include "../../Analyser/Static/MSX/Cartridge.hpp"
#include "Cartridges/ASCII8kb.hpp"
#include "Cartridges/ASCII16kb.hpp"
#include "Cartridges/Konami.hpp"
#include "Cartridges/KonamiWithSCC.hpp"
#include "../../Processors/Z80/Z80.hpp"
#include "../../Components/1770/1770.hpp"
#include "../../Components/9918/9918.hpp"
#include "../../Components/8255/i8255.hpp"
#include "../../Components/AudioToggle/AudioToggle.hpp"
#include "../../Components/AY38910/AY38910.hpp"
#include "../../Components/KonamiSCC/KonamiSCC.hpp"
#include "../../Storage/Tape/Parsers/MSX.hpp"
#include "../../Storage/Tape/Tape.hpp"
#include "../../Activity/Source.hpp"
#include "../CRTMachine.hpp"
#include "../ConfigurationTarget.hpp"
#include "../KeyboardMachine.hpp"
#include "../../Outputs/Speaker/Implementation/CompoundSource.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Outputs/Speaker/Implementation/SampleSource.hpp"
#include "../../Configurable/StandardOptions.hpp"
#include "../../ClockReceiver/ForceInline.hpp"
#include "../../Analyser/Static/MSX/Target.hpp"
namespace MSX {
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
return Configurable::standard_options(
static_cast<Configurable::StandardOptions>(Configurable::DisplayRGB | Configurable::DisplaySVideo | Configurable::DisplayComposite | Configurable::QuickLoadTape)
);
}
class AYPortHandler: public GI::AY38910::PortHandler {
public:
AYPortHandler(Storage::Tape::BinaryTapePlayer &tape_player) : tape_player_(tape_player) {}
void set_port_output(bool port_b, uint8_t value) {
if(port_b) {
// Bits 0-3: touchpad handshaking (?)
// Bit 4-5: monostable timer pulses
// Bit 6: joystick select
// Bit 7: code LED, if any
}
}
uint8_t get_port_input(bool port_b) {
if(!port_b) {
// Bits 0-5: Joystick (up, down, left, right, A, B)
// Bit 6: keyboard switch (not universal)
// Bit 7: tape input
return 0x7f | (tape_player_.get_input() ? 0x00 : 0x80);
}
return 0xff;
}
private:
Storage::Tape::BinaryTapePlayer &tape_player_;
};
class ConcreteMachine:
public Machine,
public CPU::Z80::BusHandler,
public CRTMachine::Machine,
public ConfigurationTarget::Machine,
public KeyboardMachine::Machine,
public Configurable::Device,
public MemoryMap,
public Sleeper::SleepObserver,
public Activity::Source {
public:
ConcreteMachine():
z80_(*this),
i8255_(i8255_port_handler_),
ay_(audio_queue_),
audio_toggle_(audio_queue_),
scc_(audio_queue_),
mixer_(ay_, audio_toggle_, scc_),
speaker_(mixer_),
tape_player_(3579545 * 2),
i8255_port_handler_(*this, audio_toggle_, tape_player_),
ay_port_handler_(tape_player_) {
set_clock_rate(3579545);
std::memset(unpopulated_, 0xff, sizeof(unpopulated_));
clear_all_keys();
ay_.set_port_handler(&ay_port_handler_);
speaker_.set_input_rate(3579545.0f / 2.0f);
tape_player_.set_sleep_observer(this);
// Set the AY to 50% of available volume, the toggle to 10% and leave 40% for an SCC.
mixer_.set_relative_volumes({0.5f, 0.1f, 0.4f});
}
~ConcreteMachine() {
audio_queue_.flush();
}
void setup_output(float aspect_ratio) override {
vdp_.reset(new TI::TMS9918(TI::TMS9918::TMS9918A));
}
void close_output() override {
vdp_.reset();
}
Outputs::CRT::CRT *get_crt() override {
return vdp_->get_crt();
}
Outputs::Speaker::Speaker *get_speaker() override {
return &speaker_;
}
void run_for(const Cycles cycles) override {
z80_.run_for(cycles);
}
float get_confidence() override {
if(performed_unmapped_access_ || pc_zero_accesses_ > 1) return 0.0f;
if(memory_slots_[1].handler) {
return memory_slots_[1].handler->get_confidence();
}
return 0.5f;
}
void print_type() override {
if(memory_slots_[1].handler) {
memory_slots_[1].handler->print_type();
}
}
void configure_as_target(const Analyser::Static::Target *target) override {
auto *const msx_target = dynamic_cast<const Analyser::Static::MSX::Target *>(target);
// Add a disk cartridge if any disks were supplied.
if(msx_target->has_disk_drive) {
map(2, 0, 0x4000, 0x2000);
unmap(2, 0x6000, 0x2000);
memory_slots_[2].set_handler(new DiskROM(memory_slots_[2].source));
}
// Insert the media.
insert_media(target->media);
// Type whatever has been requested.
if(!msx_target->loading_command.empty()) {
type_string(msx_target->loading_command);
}
}
bool insert_media(const Analyser::Static::Media &media) override {
if(!media.cartridges.empty()) {
const auto &segment = media.cartridges.front()->get_segments().front();
memory_slots_[1].source = segment.data;
map(1, 0, static_cast<uint16_t>(segment.start_address), std::min(segment.data.size(), 65536 - segment.start_address));
auto msx_cartridge = dynamic_cast<Analyser::Static::MSX::Cartridge *>(media.cartridges.front().get());
if(msx_cartridge) {
switch(msx_cartridge->type) {
default: break;
case Analyser::Static::MSX::Cartridge::Konami:
memory_slots_[1].set_handler(new Cartridge::KonamiROMSlotHandler(*this, 1));
break;
case Analyser::Static::MSX::Cartridge::KonamiWithSCC:
memory_slots_[1].set_handler(new Cartridge::KonamiWithSCCROMSlotHandler(*this, 1, scc_));
break;
case Analyser::Static::MSX::Cartridge::ASCII8kb:
memory_slots_[1].set_handler(new Cartridge::ASCII8kbROMSlotHandler(*this, 1));
break;
case Analyser::Static::MSX::Cartridge::ASCII16kb:
memory_slots_[1].set_handler(new Cartridge::ASCII16kbROMSlotHandler(*this, 1));
break;
}
}
}
if(!media.tapes.empty()) {
tape_player_.set_tape(media.tapes.front());
}
if(!media.disks.empty()) {
DiskROM *disk_rom = get_disk_rom();
if(disk_rom) {
size_t drive = 0;
for(auto &disk : media.disks) {
disk_rom->set_disk(disk, drive);
drive++;
if(drive == 2) break;
}
}
}
set_use_fast_tape();
return true;
}
void type_string(const std::string &string) override final {
input_text_ += string;
}
// MARK: MSX::MemoryMap
void map(int slot, std::size_t source_address, uint16_t destination_address, std::size_t length) override {
assert(!(destination_address & 8191));
assert(!(length & 8191));
assert(static_cast<std::size_t>(destination_address) + length <= 65536);
for(std::size_t c = 0; c < (length >> 13); ++c) {
if(memory_slots_[slot].wrapping_strategy == ROMSlotHandler::WrappingStrategy::Repeat) source_address %= memory_slots_[slot].source.size();
memory_slots_[slot].read_pointers[(destination_address >> 13) + c] =
(source_address < memory_slots_[slot].source.size()) ? &memory_slots_[slot].source[source_address] : unpopulated_;
source_address += 8192;
}
page_memory(paged_memory_);
}
void unmap(int slot, uint16_t destination_address, std::size_t length) override {
assert(!(destination_address & 8191));
assert(!(length & 8191));
assert(static_cast<std::size_t>(destination_address) + length <= 65536);
for(std::size_t c = 0; c < (length >> 13); ++c) {
memory_slots_[slot].read_pointers[(destination_address >> 13) + c] = nullptr;
}
page_memory(paged_memory_);
}
// MARK: Ordinary paging.
void page_memory(uint8_t value) {
paged_memory_ = value;
for(std::size_t c = 0; c < 8; c += 2) {
read_pointers_[c] = memory_slots_[value & 3].read_pointers[c];
write_pointers_[c] = memory_slots_[value & 3].write_pointers[c];
read_pointers_[c+1] = memory_slots_[value & 3].read_pointers[c+1];
write_pointers_[c+1] = memory_slots_[value & 3].write_pointers[c+1];
value >>= 2;
}
}
// MARK: Z80::BusHandler
forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
// Per the best information I currently have, the MSX inserts an extra cycle into each opcode read,
// but otherwise runs without pause.
const HalfCycles addition((cycle.operation == CPU::Z80::PartialMachineCycle::ReadOpcode) ? 2 : 0);
const HalfCycles total_length = addition + cycle.length;
time_since_vdp_update_ += total_length;
time_since_ay_update_ += total_length;
memory_slots_[0].cycles_since_update += total_length;
memory_slots_[1].cycles_since_update += total_length;
memory_slots_[2].cycles_since_update += total_length;
memory_slots_[3].cycles_since_update += total_length;
uint16_t address = cycle.address ? *cycle.address : 0x0000;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::ReadOpcode:
if(use_fast_tape_) {
if(address == 0x1a63) {
// TAPION
// Enable the tape motor.
i8255_.set_register(0xab, 0x8);
// Disable interrupts.
z80_.set_value_of_register(CPU::Z80::Register::IFF1, 0);
z80_.set_value_of_register(CPU::Z80::Register::IFF2, 0);
// Use the parser to find a header, and if one is found then populate
// LOWLIM and WINWID, and reset carry. Otherwise set carry.
using Parser = Storage::Tape::MSX::Parser;
std::unique_ptr<Parser::FileSpeed> new_speed = Parser::find_header(tape_player_);
if(new_speed) {
ram_[0xfca4] = new_speed->minimum_start_bit_duration;
ram_[0xfca5] = new_speed->low_high_disrimination_duration;
z80_.set_value_of_register(CPU::Z80::Register::Flags, 0);
} else {
z80_.set_value_of_register(CPU::Z80::Register::Flags, 1);
}
// RET.
*cycle.value = 0xc9;
break;
}
if(address == 0x1abc) {
// TAPIN
// Grab the current values of LOWLIM and WINWID.
using Parser = Storage::Tape::MSX::Parser;
Parser::FileSpeed tape_speed;
tape_speed.minimum_start_bit_duration = ram_[0xfca4];
tape_speed.low_high_disrimination_duration = ram_[0xfca5];
// Ask the tape parser to grab a byte.
int next_byte = Parser::get_byte(tape_speed, tape_player_);
// If a byte was found, return it with carry unset. Otherwise set carry to
// indicate error.
if(next_byte >= 0) {
z80_.set_value_of_register(CPU::Z80::Register::A, static_cast<uint16_t>(next_byte));
z80_.set_value_of_register(CPU::Z80::Register::Flags, 0);
} else {
z80_.set_value_of_register(CPU::Z80::Register::Flags, 1);
}
// RET.
*cycle.value = 0xc9;
break;
}
}
if(!address) {
pc_zero_accesses_++;
}
if(read_pointers_[address >> 13] == unpopulated_) {
performed_unmapped_access_ = true;
}
pc_address_ = address; // This is retained so as to be able to name the source of an access to cartridge handlers.
case CPU::Z80::PartialMachineCycle::Read:
if(read_pointers_[address >> 13]) {
*cycle.value = read_pointers_[address >> 13][address & 8191];
} else {
int slot_hit = (paged_memory_ >> ((address >> 14) * 2)) & 3;
memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.flush());
*cycle.value = memory_slots_[slot_hit].handler->read(address);
}
break;
case CPU::Z80::PartialMachineCycle::Write: {
write_pointers_[address >> 13][address & 8191] = *cycle.value;
int slot_hit = (paged_memory_ >> ((address >> 14) * 2)) & 3;
if(memory_slots_[slot_hit].handler) {
update_audio();
memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.flush());
memory_slots_[slot_hit].handler->write(address, *cycle.value, read_pointers_[pc_address_ >> 13] != memory_slots_[0].read_pointers[pc_address_ >> 13]);
}
} break;
case CPU::Z80::PartialMachineCycle::Input:
switch(address & 0xff) {
case 0x98: case 0x99:
vdp_->run_for(time_since_vdp_update_.flush());
*cycle.value = vdp_->get_register(address);
z80_.set_interrupt_line(vdp_->get_interrupt_line());
time_until_interrupt_ = vdp_->get_time_until_interrupt();
break;
case 0xa2:
update_audio();
ay_.set_control_lines(static_cast<GI::AY38910::ControlLines>(GI::AY38910::BC2 | GI::AY38910::BC1));
*cycle.value = ay_.get_data_output();
ay_.set_control_lines(static_cast<GI::AY38910::ControlLines>(0));
break;
case 0xa8: case 0xa9:
case 0xaa: case 0xab:
*cycle.value = i8255_.get_register(address);
break;
default:
*cycle.value = 0xff;
break;
}
break;
case CPU::Z80::PartialMachineCycle::Output: {
const int port = address & 0xff;
switch(port) {
case 0x98: case 0x99:
vdp_->run_for(time_since_vdp_update_.flush());
vdp_->set_register(address, *cycle.value);
z80_.set_interrupt_line(vdp_->get_interrupt_line());
time_until_interrupt_ = vdp_->get_time_until_interrupt();
break;
case 0xa0: case 0xa1:
update_audio();
ay_.set_control_lines(static_cast<GI::AY38910::ControlLines>(GI::AY38910::BDIR | GI::AY38910::BC2 | ((port == 0xa0) ? GI::AY38910::BC1 : 0)));
ay_.set_data_input(*cycle.value);
ay_.set_control_lines(static_cast<GI::AY38910::ControlLines>(0));
break;
case 0xa8: case 0xa9:
case 0xaa: case 0xab:
i8255_.set_register(address, *cycle.value);
break;
case 0xfc: case 0xfd: case 0xfe: case 0xff:
// printf("RAM banking %02x: %02x\n", port, *cycle.value);
break;
}
} break;
case CPU::Z80::PartialMachineCycle::Interrupt:
*cycle.value = 0xff;
// Take this as a convenient moment to jump into the keyboard buffer, if desired.
if(!input_text_.empty()) {
// TODO: is it safe to assume these addresses?
const int buffer_start = 0xfbf0;
const int buffer_end = 0xfb18;
int read_address = ram_[0xf3fa] | (ram_[0xf3fb] << 8);
int write_address = ram_[0xf3f8] | (ram_[0xf3f9] << 8);
const int buffer_size = buffer_end - buffer_start;
int available_space = write_address + buffer_size - read_address - 1;
const std::size_t characters_to_write = std::min(static_cast<std::size_t>(available_space), input_text_.size());
write_address -= buffer_start;
for(std::size_t c = 0; c < characters_to_write; ++c) {
char character = input_text_[c];
ram_[write_address + buffer_start] = static_cast<uint8_t>(character);
write_address = (write_address + 1) % buffer_size;
}
write_address += buffer_start;
input_text_.erase(input_text_.begin(), input_text_.begin() + static_cast<std::string::difference_type>(characters_to_write));
ram_[0xf3f8] = static_cast<uint8_t>(write_address);
ram_[0xf3f9] = static_cast<uint8_t>(write_address >> 8);
}
break;
default: break;
}
if(!tape_player_is_sleeping_)
tape_player_.run_for(cycle.length.as_int());
if(time_until_interrupt_ > 0) {
time_until_interrupt_ -= total_length;
if(time_until_interrupt_ <= HalfCycles(0)) {
z80_.set_interrupt_line(true, time_until_interrupt_);
}
}
return addition;
}
void flush() {
vdp_->run_for(time_since_vdp_update_.flush());
update_audio();
audio_queue_.perform();
}
// Obtains the system ROMs.
bool set_rom_fetcher(const ROMMachine::ROMFetcher &roms_with_names) override {
auto roms = roms_with_names(
"MSX",
{
"msx.rom",
"disk.rom"
});
if(!roms[0] || !roms[1]) return false;
memory_slots_[0].source = std::move(*roms[0]);
memory_slots_[0].source.resize(32768);
memory_slots_[2].source = std::move(*roms[1]);
memory_slots_[2].source.resize(16384);
for(size_t c = 0; c < 8; ++c) {
for(size_t slot = 0; slot < 3; ++slot) {
memory_slots_[slot].read_pointers[c] = unpopulated_;
memory_slots_[slot].write_pointers[c] = scratch_;
}
memory_slots_[3].read_pointers[c] =
memory_slots_[3].write_pointers[c] = &ram_[c * 8192];
}
map(0, 0, 0, 32768);
page_memory(0);
return true;
}
void set_keyboard_line(int line) {
selected_key_line_ = line;
}
uint8_t read_keyboard() {
return key_states_[selected_key_line_];
}
void clear_all_keys() override {
std::memset(key_states_, 0xff, sizeof(key_states_));
}
void set_key_state(uint16_t key, bool is_pressed) override {
int mask = 1 << (key & 7);
int line = key >> 4;
if(is_pressed) key_states_[line] &= ~mask; else key_states_[line] |= mask;
}
KeyboardMapper *get_keyboard_mapper() override {
return &keyboard_mapper_;
}
// MARK: - Configuration options.
std::vector<std::unique_ptr<Configurable::Option>> get_options() override {
return MSX::get_options();
}
void set_selections(const Configurable::SelectionSet &selections_by_option) override {
bool quickload;
if(Configurable::get_quick_load_tape(selections_by_option, quickload)) {
allow_fast_tape_ = quickload;
set_use_fast_tape();
}
Configurable::Display display;
if(Configurable::get_display(selections_by_option, display)) {
set_video_signal_configurable(display);
}
}
Configurable::SelectionSet get_accurate_selections() override {
Configurable::SelectionSet selection_set;
Configurable::append_quick_load_tape_selection(selection_set, false);
Configurable::append_display_selection(selection_set, Configurable::Display::Composite);
return selection_set;
}
Configurable::SelectionSet get_user_friendly_selections() override {
Configurable::SelectionSet selection_set;
Configurable::append_quick_load_tape_selection(selection_set, true);
Configurable::append_display_selection(selection_set, Configurable::Display::RGB);
return selection_set;
}
// MARK: - Sleeper
void set_component_is_sleeping(Sleeper *component, bool is_sleeping) override {
tape_player_is_sleeping_ = tape_player_.is_sleeping();
set_use_fast_tape();
}
// MARK: - Activity::Source
void set_activity_observer(Activity::Observer *observer) override {
DiskROM *disk_rom = get_disk_rom();
if(disk_rom) {
disk_rom->set_activity_observer(observer);
}
}
private:
DiskROM *get_disk_rom() {
return dynamic_cast<DiskROM *>(memory_slots_[2].handler.get());
}
void update_audio() {
speaker_.run_for(audio_queue_, time_since_ay_update_.divide_cycles(Cycles(2)));
}
class i8255PortHandler: public Intel::i8255::PortHandler {
public:
i8255PortHandler(ConcreteMachine &machine, Audio::Toggle &audio_toggle, Storage::Tape::BinaryTapePlayer &tape_player) :
machine_(machine), audio_toggle_(audio_toggle), tape_player_(tape_player) {}
void set_value(int port, uint8_t value) {
switch(port) {
case 0: machine_.page_memory(value); break;
case 2: {
// TODO:
// b6 caps lock LED
// b5 audio output
// b4: cassette motor relay
tape_player_.set_motor_control(!(value & 0x10));
// b7: keyboard click
bool new_audio_level = !!(value & 0x80);
if(audio_toggle_.get_output() != new_audio_level) {
machine_.update_audio();
audio_toggle_.set_output(new_audio_level);
}
// b0-b3: keyboard line
machine_.set_keyboard_line(value & 0xf);
} break;
default: printf("What what what what?\n"); break;
}
}
uint8_t get_value(int port) {
if(port == 1) {
return machine_.read_keyboard();
} else printf("What what?\n");
return 0xff;
}
private:
ConcreteMachine &machine_;
Audio::Toggle &audio_toggle_;
Storage::Tape::BinaryTapePlayer &tape_player_;
};
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
std::unique_ptr<TI::TMS9918> vdp_;
Intel::i8255::i8255<i8255PortHandler> i8255_;
Concurrency::DeferringAsyncTaskQueue audio_queue_;
GI::AY38910::AY38910 ay_;
Audio::Toggle audio_toggle_;
Konami::SCC scc_;
Outputs::Speaker::CompoundSource<GI::AY38910::AY38910, Audio::Toggle, Konami::SCC> mixer_;
Outputs::Speaker::LowpassSpeaker<Outputs::Speaker::CompoundSource<GI::AY38910::AY38910, Audio::Toggle, Konami::SCC>> speaker_;
Storage::Tape::BinaryTapePlayer tape_player_;
bool tape_player_is_sleeping_ = false;
bool allow_fast_tape_ = false;
bool use_fast_tape_ = false;
void set_use_fast_tape() {
use_fast_tape_ = !tape_player_is_sleeping_ && allow_fast_tape_ && tape_player_.has_tape();
}
i8255PortHandler i8255_port_handler_;
AYPortHandler ay_port_handler_;
uint8_t paged_memory_ = 0;
uint8_t *read_pointers_[8];
uint8_t *write_pointers_[8];
struct MemorySlots {
uint8_t *read_pointers[8];
uint8_t *write_pointers[8];
void set_handler(ROMSlotHandler *slot_handler) {
handler.reset(slot_handler);
wrapping_strategy = handler->wrapping_strategy();
}
std::unique_ptr<ROMSlotHandler> handler;
std::vector<uint8_t> source;
HalfCycles cycles_since_update;
ROMSlotHandler::WrappingStrategy wrapping_strategy = ROMSlotHandler::WrappingStrategy::Repeat;
} memory_slots_[4];
uint8_t ram_[65536];
uint8_t scratch_[8192];
uint8_t unpopulated_[8192];
HalfCycles time_since_vdp_update_;
HalfCycles time_since_ay_update_;
HalfCycles time_until_interrupt_;
uint8_t key_states_[16];
int selected_key_line_ = 0;
std::string input_text_;
MSX::KeyboardMapper keyboard_mapper_;
int pc_zero_accesses_ = 0;
bool performed_unmapped_access_ = false;
uint16_t pc_address_;
};
}
using namespace MSX;
Machine *Machine::MSX() {
return new ConcreteMachine;
}
Machine::~Machine() {}