mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-15 12:08:33 +00:00
496 lines
22 KiB
C++
496 lines
22 KiB
C++
//
|
|
// CRT.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 19/07/2015.
|
|
// Copyright 2015 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "CRT.hpp"
|
|
|
|
#include <cstdarg>
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
|
|
using namespace Outputs::CRT;
|
|
|
|
void CRT::set_new_timing(int cycles_per_line, int height_of_display, Outputs::Display::ColourSpace colour_space, int colour_cycle_numerator, int colour_cycle_denominator, int vertical_sync_half_lines, bool should_alternate) {
|
|
|
|
constexpr int millisecondsHorizontalRetraceTime = 7; // Source: Dictionary of Video and Television Technology, p. 234.
|
|
constexpr int scanlinesVerticalRetraceTime = 8; // Source: ibid.
|
|
|
|
// To quote:
|
|
//
|
|
// "retrace interval; The interval of time for the return of the blanked scanning beam of
|
|
// a TV picture tube or camera tube to the starting point of a line or field. It is about
|
|
// 7 microseconds for horizontal retrace and 500 to 750 microseconds for vertical retrace
|
|
// in NTSC and PAL TV."
|
|
|
|
time_multiplier_ = 65535 / cycles_per_line;
|
|
phase_denominator_ = int64_t(cycles_per_line) * int64_t(colour_cycle_denominator) * int64_t(time_multiplier_);
|
|
phase_numerator_ = 0;
|
|
colour_cycle_numerator_ = int64_t(colour_cycle_numerator);
|
|
phase_alternates_ = should_alternate;
|
|
is_alernate_line_ &= phase_alternates_;
|
|
cycles_per_line_ = cycles_per_line;
|
|
const int multiplied_cycles_per_line = cycles_per_line * time_multiplier_;
|
|
|
|
// Allow sync to be detected (and acted upon) a line earlier than the specified requirement,
|
|
// as a simple way of avoiding not-quite-exact comparison issues while still being true enough to
|
|
// the gist for simple debugging.
|
|
sync_capacitor_charge_threshold_ = ((vertical_sync_half_lines - 2) * cycles_per_line) >> 1;
|
|
|
|
// Create the two flywheels:
|
|
//
|
|
// The horizontal flywheel has an ideal period of `multiplied_cycles_per_line`, will accept syncs
|
|
// within 1/32nd of that (i.e. tolerates 3.125% error) and takes millisecondsHorizontalRetraceTime
|
|
// to retrace.
|
|
//
|
|
// The vertical slywheel has an ideal period of `multiplied_cycles_per_line * height_of_display`,
|
|
// will accept syncs within 1/8th of that (i.e. tolerates 12.5% error) and takes scanlinesVerticalRetraceTime
|
|
// to retrace.
|
|
horizontal_flywheel_ = std::make_unique<Flywheel>(multiplied_cycles_per_line, (millisecondsHorizontalRetraceTime * multiplied_cycles_per_line) >> 6, multiplied_cycles_per_line >> 5);
|
|
vertical_flywheel_ = std::make_unique<Flywheel>(multiplied_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * multiplied_cycles_per_line, (multiplied_cycles_per_line * height_of_display) >> 3);
|
|
|
|
// Figure out the divisor necessary to get the horizontal flywheel into a 16-bit range.
|
|
const int real_clock_scan_period = vertical_flywheel_->get_scan_period();
|
|
vertical_flywheel_output_divider_ = (real_clock_scan_period + 65534) / 65535;
|
|
|
|
// Communicate relevant fields to the scan target.
|
|
scan_target_modals_.output_scale.x = uint16_t(horizontal_flywheel_->get_scan_period());
|
|
scan_target_modals_.output_scale.y = uint16_t(real_clock_scan_period / vertical_flywheel_output_divider_);
|
|
scan_target_modals_.expected_vertical_lines = height_of_display;
|
|
scan_target_modals_.composite_colour_space = colour_space;
|
|
scan_target_modals_.colour_cycle_numerator = colour_cycle_numerator;
|
|
scan_target_modals_.colour_cycle_denominator = colour_cycle_denominator;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
|
scan_target_ = scan_target;
|
|
if(!scan_target_) scan_target_ = &Outputs::Display::NullScanTarget::singleton;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_new_data_type(Outputs::Display::InputDataType data_type) {
|
|
scan_target_modals_.input_data_type = data_type;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_aspect_ratio(float aspect_ratio) {
|
|
scan_target_modals_.aspect_ratio = aspect_ratio;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_visible_area(Outputs::Display::Rect visible_area) {
|
|
scan_target_modals_.visible_area = visible_area;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_display_type(Outputs::Display::DisplayType display_type) {
|
|
scan_target_modals_.display_type = display_type;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_phase_linked_luminance_offset(float offset) {
|
|
scan_target_modals_.input_data_tweaks.phase_linked_luminance_offset = offset;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_input_data_type(Outputs::Display::InputDataType input_data_type) {
|
|
scan_target_modals_.input_data_type = input_data_type;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_brightness(float brightness) {
|
|
scan_target_modals_.brightness = brightness;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
void CRT::set_new_display_type(int cycles_per_line, Outputs::Display::Type displayType) {
|
|
switch(displayType) {
|
|
case Outputs::Display::Type::PAL50:
|
|
case Outputs::Display::Type::PAL60:
|
|
scan_target_modals_.intended_gamma = 2.8f;
|
|
set_new_timing(cycles_per_line, (displayType == Outputs::Display::Type::PAL50) ? 312 : 262, Outputs::Display::ColourSpace::YUV, 709379, 2500, 5, true);
|
|
// i.e. 283.7516 colour cycles per line; 2.5 lines = vertical sync.
|
|
break;
|
|
|
|
case Outputs::Display::Type::NTSC60:
|
|
scan_target_modals_.intended_gamma = 2.2f;
|
|
set_new_timing(cycles_per_line, 262, Outputs::Display::ColourSpace::YIQ, 455, 2, 6, false); // i.e. 227.5 colour cycles per line, 3 lines = vertical sync.
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CRT::set_composite_function_type(CompositeSourceType type, float offset_of_first_sample) {
|
|
if(type == DiscreteFourSamplesPerCycle) {
|
|
colour_burst_phase_adjustment_ = static_cast<uint8_t>(offset_of_first_sample * 256.0f) & 63;
|
|
} else {
|
|
colour_burst_phase_adjustment_ = 0xff;
|
|
}
|
|
}
|
|
|
|
void CRT::set_input_gamma(float gamma) {
|
|
scan_target_modals_.intended_gamma = gamma;
|
|
scan_target_->set_modals(scan_target_modals_);
|
|
}
|
|
|
|
CRT::CRT( int cycles_per_line,
|
|
int clocks_per_pixel_greatest_common_divisor,
|
|
int height_of_display,
|
|
Outputs::Display::ColourSpace colour_space,
|
|
int colour_cycle_numerator, int colour_cycle_denominator,
|
|
int vertical_sync_half_lines,
|
|
bool should_alternate,
|
|
Outputs::Display::InputDataType data_type) {
|
|
scan_target_modals_.input_data_type = data_type;
|
|
scan_target_modals_.cycles_per_line = cycles_per_line;
|
|
scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor;
|
|
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator, vertical_sync_half_lines, should_alternate);
|
|
}
|
|
|
|
CRT::CRT( int cycles_per_line,
|
|
int clocks_per_pixel_greatest_common_divisor,
|
|
Outputs::Display::Type display_type,
|
|
Outputs::Display::InputDataType data_type) {
|
|
scan_target_modals_.input_data_type = data_type;
|
|
scan_target_modals_.cycles_per_line = cycles_per_line;
|
|
scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor;
|
|
set_new_display_type(cycles_per_line, display_type);
|
|
}
|
|
|
|
CRT::CRT(int cycles_per_line,
|
|
int clocks_per_pixel_greatest_common_divisor,
|
|
int height_of_display,
|
|
int vertical_sync_half_lines,
|
|
Outputs::Display::InputDataType data_type) {
|
|
scan_target_modals_.input_data_type = data_type;
|
|
scan_target_modals_.cycles_per_line = cycles_per_line;
|
|
scan_target_modals_.clocks_per_pixel_greatest_common_divisor = clocks_per_pixel_greatest_common_divisor;
|
|
set_new_timing(cycles_per_line, height_of_display, Outputs::Display::ColourSpace::YIQ, 1, 1, vertical_sync_half_lines, false);
|
|
}
|
|
|
|
|
|
// MARK: - Sync loop
|
|
|
|
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, int cycles_to_run_for, int *cycles_advanced) {
|
|
return vertical_flywheel_->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
|
|
}
|
|
|
|
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced) {
|
|
return horizontal_flywheel_->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
|
|
}
|
|
|
|
Outputs::Display::ScanTarget::Scan::EndPoint CRT::end_point(uint16_t data_offset) {
|
|
Display::ScanTarget::Scan::EndPoint end_point;
|
|
|
|
end_point.x = uint16_t(horizontal_flywheel_->get_current_output_position());
|
|
end_point.y = uint16_t(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_);
|
|
end_point.data_offset = data_offset;
|
|
|
|
// TODO: this is a workaround for the limited precision that can be posted onwards;
|
|
// it'd be better to make time_multiplier_ an explicit modal and just not divide by it.
|
|
const auto lost_precision = cycles_since_horizontal_sync_ % time_multiplier_;
|
|
end_point.composite_angle = int16_t(((phase_numerator_ - lost_precision * colour_cycle_numerator_) << 6) / phase_denominator_) * (is_alernate_line_ ? -1 : 1);
|
|
end_point.cycles_since_end_of_horizontal_retrace = uint16_t(cycles_since_horizontal_sync_ / time_multiplier_);
|
|
|
|
return end_point;
|
|
}
|
|
|
|
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_requested, const Scan::Type type, int number_of_samples) {
|
|
number_of_cycles *= time_multiplier_;
|
|
|
|
const bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data));
|
|
const auto total_cycles = number_of_cycles;
|
|
bool did_output = false;
|
|
|
|
while(number_of_cycles) {
|
|
|
|
// Get time until next horizontal and vertical sync generator events.
|
|
int time_until_vertical_sync_event, time_until_horizontal_sync_event;
|
|
const Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
|
|
const Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
|
|
|
|
// Whichever event is scheduled to happen first is the one to advance to.
|
|
const int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
|
|
|
|
hsync_requested = false;
|
|
vsync_requested = false;
|
|
|
|
// Determine whether to output any data for this portion of the output; if so then grab somewhere to put it.
|
|
const bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
|
|
Outputs::Display::ScanTarget::Scan *const next_scan = is_output_segment ? scan_target_->begin_scan() : nullptr;
|
|
did_output |= is_output_segment;
|
|
|
|
// If outputting, store the start location and scan constants.
|
|
if(next_scan) {
|
|
next_scan->end_points[0] = end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles));
|
|
next_scan->composite_amplitude = colour_burst_amplitude_;
|
|
}
|
|
|
|
// Advance time: that'll affect both the colour subcarrier position and the number of cycles left to run.
|
|
phase_numerator_ += next_run_length * colour_cycle_numerator_;
|
|
number_of_cycles -= next_run_length;
|
|
cycles_since_horizontal_sync_ += next_run_length;
|
|
|
|
// React to the incoming event.
|
|
horizontal_flywheel_->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
|
|
vertical_flywheel_->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
|
|
|
|
// End the scan if necessary.
|
|
if(next_scan) {
|
|
next_scan->end_points[1] = end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles));
|
|
scan_target_->end_scan();
|
|
}
|
|
|
|
// Announce horizontal retrace events.
|
|
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) {
|
|
// Reset the cycles-since-sync counter if this is the end of retrace.
|
|
if(next_horizontal_sync_event == Flywheel::SyncEvent::EndRetrace) {
|
|
cycles_since_horizontal_sync_ = 0;
|
|
|
|
// This is unnecessary, strictly speaking, but seeks to help ScanTargets fit as
|
|
// much as possible into a fixed range.
|
|
phase_numerator_ %= phase_denominator_;
|
|
if(!phase_numerator_) phase_numerator_ += phase_denominator_;
|
|
}
|
|
|
|
// Announce event.
|
|
const auto event =
|
|
(next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace)
|
|
? Outputs::Display::ScanTarget::Event::BeginHorizontalRetrace : Outputs::Display::ScanTarget::Event::EndHorizontalRetrace;
|
|
scan_target_->announce(
|
|
event,
|
|
!(horizontal_flywheel_->is_in_retrace() || vertical_flywheel_->is_in_retrace()),
|
|
end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)),
|
|
colour_burst_amplitude_);
|
|
|
|
// If retrace is starting, update phase if required and mark no colour burst spotted yet.
|
|
if(next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) {
|
|
is_alernate_line_ ^= phase_alternates_;
|
|
colour_burst_amplitude_ = 0;
|
|
}
|
|
}
|
|
|
|
// Also announce vertical retrace events.
|
|
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) {
|
|
const auto event =
|
|
(next_vertical_sync_event == Flywheel::SyncEvent::StartRetrace)
|
|
? Outputs::Display::ScanTarget::Event::BeginVerticalRetrace : Outputs::Display::ScanTarget::Event::EndVerticalRetrace;
|
|
scan_target_->announce(
|
|
event,
|
|
!(horizontal_flywheel_->is_in_retrace() || vertical_flywheel_->is_in_retrace()),
|
|
end_point(uint16_t((total_cycles - number_of_cycles) * number_of_samples / total_cycles)),
|
|
colour_burst_amplitude_);
|
|
}
|
|
|
|
// if this is vertical retrace then advance a field
|
|
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) {
|
|
if(delegate_) {
|
|
frames_since_last_delegate_call_++;
|
|
if(frames_since_last_delegate_call_ == 20) {
|
|
delegate_->crt_did_end_batch_of_frames(this, frames_since_last_delegate_call_, vertical_flywheel_->get_and_reset_number_of_surprises());
|
|
frames_since_last_delegate_call_ = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(did_output) {
|
|
scan_target_->submit();
|
|
}
|
|
}
|
|
|
|
// MARK: - stream feeding methods
|
|
|
|
void CRT::output_scan(const Scan *const scan) {
|
|
assert(scan->number_of_cycles >= 0);
|
|
|
|
// Simplified colour burst logic: if it's within the back porch we'll take it.
|
|
if(scan->type == Scan::Type::ColourBurst) {
|
|
if(!colour_burst_amplitude_ && horizontal_flywheel_->get_current_time() < (horizontal_flywheel_->get_standard_period() * 12) >> 6) {
|
|
// Load phase_numerator_ as a fixed-point quantity in the range [0, 255].
|
|
phase_numerator_ = scan->phase;
|
|
if(colour_burst_phase_adjustment_ != 0xff)
|
|
phase_numerator_ = (phase_numerator_ & ~63) + colour_burst_phase_adjustment_;
|
|
|
|
// Multiply the phase_numerator_ up to be to the proper scale.
|
|
phase_numerator_ = (phase_numerator_ * phase_denominator_) >> 8;
|
|
|
|
// Crib the colour burst amplitude.
|
|
colour_burst_amplitude_ = scan->amplitude;
|
|
}
|
|
}
|
|
// TODO: inspect raw data for potential colour burst if required; the DPLL and some zero crossing logic
|
|
// will probably be sufficient but some test data would be helpful
|
|
|
|
// sync logic: mark whether this is currently sync and check for a leading edge
|
|
const bool this_is_sync = (scan->type == Scan::Type::Sync);
|
|
const bool is_leading_edge = (!is_receiving_sync_ && this_is_sync);
|
|
is_receiving_sync_ = this_is_sync;
|
|
|
|
// Horizontal sync is recognised on any leading edge that is not 'near' the expected vertical sync;
|
|
// the second limb is to avoid slightly horizontal sync shifting from the common pattern of
|
|
// equalisation pulses as the inverse of ordinary horizontal sync.
|
|
bool hsync_requested = is_leading_edge && !vertical_flywheel_->is_near_expected_sync();
|
|
|
|
if(this_is_sync) {
|
|
// If this is sync then either begin or continue a sync accumulation phase.
|
|
is_accumulating_sync_ = true;
|
|
cycles_since_sync_ = 0;
|
|
} else {
|
|
// If this is not sync then check how long it has been since sync. If it's more than
|
|
// half a line then end sync accumulation and zero out the accumulating count.
|
|
cycles_since_sync_ += scan->number_of_cycles;
|
|
if(cycles_since_sync_ > (cycles_per_line_ >> 2)) {
|
|
cycles_of_sync_ = 0;
|
|
is_accumulating_sync_ = false;
|
|
is_refusing_sync_ = false;
|
|
}
|
|
}
|
|
|
|
int number_of_cycles = scan->number_of_cycles;
|
|
bool vsync_requested = false;
|
|
|
|
// If sync is being accumulated then accumulate it; if it crosses the vertical sync threshold then
|
|
// divide this line at the crossing point and indicate vertical sync there.
|
|
if(is_accumulating_sync_ && !is_refusing_sync_) {
|
|
cycles_of_sync_ += scan->number_of_cycles;
|
|
|
|
if(this_is_sync && cycles_of_sync_ >= sync_capacitor_charge_threshold_) {
|
|
const int overshoot = std::min(cycles_of_sync_ - sync_capacitor_charge_threshold_, number_of_cycles);
|
|
if(overshoot) {
|
|
number_of_cycles -= overshoot;
|
|
advance_cycles(number_of_cycles, hsync_requested, false, scan->type, 0);
|
|
hsync_requested = false;
|
|
number_of_cycles = overshoot;
|
|
}
|
|
|
|
is_refusing_sync_ = true;
|
|
vsync_requested = true;
|
|
}
|
|
}
|
|
|
|
advance_cycles(number_of_cycles, hsync_requested, vsync_requested, scan->type, scan->number_of_samples);
|
|
}
|
|
|
|
/*
|
|
These all merely channel into advance_cycles, supplying appropriate arguments
|
|
*/
|
|
void CRT::output_sync(int number_of_cycles) {
|
|
Scan scan;
|
|
scan.type = Scan::Type::Sync;
|
|
scan.number_of_cycles = number_of_cycles;
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_blank(int number_of_cycles) {
|
|
Scan scan;
|
|
scan.type = Scan::Type::Blank;
|
|
scan.number_of_cycles = number_of_cycles;
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_level(int number_of_cycles) {
|
|
scan_target_->end_data(1);
|
|
Scan scan;
|
|
scan.type = Scan::Type::Level;
|
|
scan.number_of_cycles = number_of_cycles;
|
|
scan.number_of_samples = 1;
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_colour_burst(int number_of_cycles, uint8_t phase, uint8_t amplitude) {
|
|
Scan scan;
|
|
scan.type = Scan::Type::ColourBurst;
|
|
scan.number_of_cycles = number_of_cycles;
|
|
scan.phase = phase;
|
|
scan.amplitude = amplitude >> 1;
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_default_colour_burst(int number_of_cycles, uint8_t amplitude) {
|
|
// TODO: avoid applying a rounding error here?
|
|
output_colour_burst(number_of_cycles, static_cast<uint8_t>((phase_numerator_ * 256) / phase_denominator_), amplitude);
|
|
}
|
|
|
|
void CRT::set_immediate_default_phase(float phase) {
|
|
phase = fmodf(phase, 1.0f);
|
|
phase_numerator_ = static_cast<int>(phase * static_cast<float>(phase_denominator_));
|
|
}
|
|
|
|
void CRT::output_data(int number_of_cycles, size_t number_of_samples) {
|
|
#ifndef NDEBUG
|
|
assert(number_of_samples > 0 && number_of_samples <= allocated_data_length_);
|
|
allocated_data_length_ = std::numeric_limits<size_t>::min();
|
|
#endif
|
|
scan_target_->end_data(number_of_samples);
|
|
Scan scan;
|
|
scan.type = Scan::Type::Data;
|
|
scan.number_of_cycles = number_of_cycles;
|
|
scan.number_of_samples = int(number_of_samples);
|
|
output_scan(&scan);
|
|
}
|
|
|
|
// MARK: - Getters.
|
|
|
|
Outputs::Display::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) const {
|
|
first_cycle_after_sync *= time_multiplier_;
|
|
number_of_cycles *= time_multiplier_;
|
|
|
|
first_line_after_sync -= 2;
|
|
number_of_lines += 4;
|
|
|
|
// determine prima facie x extent
|
|
const int horizontal_period = horizontal_flywheel_->get_standard_period();
|
|
const int horizontal_scan_period = horizontal_flywheel_->get_scan_period();
|
|
const int horizontal_retrace_period = horizontal_period - horizontal_scan_period;
|
|
|
|
// make sure that the requested range is visible
|
|
if(static_cast<int>(first_cycle_after_sync) < horizontal_retrace_period) first_cycle_after_sync = static_cast<int>(horizontal_retrace_period);
|
|
if(static_cast<int>(first_cycle_after_sync + number_of_cycles) > horizontal_scan_period) number_of_cycles = static_cast<int>(horizontal_scan_period - static_cast<int>(first_cycle_after_sync));
|
|
|
|
float start_x = static_cast<float>(static_cast<int>(first_cycle_after_sync) - horizontal_retrace_period) / static_cast<float>(horizontal_scan_period);
|
|
float width = static_cast<float>(number_of_cycles) / static_cast<float>(horizontal_scan_period);
|
|
|
|
// determine prima facie y extent
|
|
const int vertical_period = vertical_flywheel_->get_standard_period();
|
|
const int vertical_scan_period = vertical_flywheel_->get_scan_period();
|
|
const int vertical_retrace_period = vertical_period - vertical_scan_period;
|
|
|
|
// make sure that the requested range is visible
|
|
// if(static_cast<int>(first_line_after_sync) * horizontal_period < vertical_retrace_period)
|
|
// first_line_after_sync = (vertical_retrace_period + horizontal_period - 1) / horizontal_period;
|
|
// if((first_line_after_sync + number_of_lines) * horizontal_period > vertical_scan_period)
|
|
// number_of_lines = static_cast<int>(horizontal_scan_period - static_cast<int>(first_cycle_after_sync));
|
|
|
|
float start_y = static_cast<float>((static_cast<int>(first_line_after_sync) * horizontal_period) - vertical_retrace_period) / static_cast<float>(vertical_scan_period);
|
|
float height = static_cast<float>(static_cast<int>(number_of_lines) * horizontal_period) / vertical_scan_period;
|
|
|
|
// adjust to ensure aspect ratio is correct
|
|
const float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f);
|
|
const float ideal_width = height * adjusted_aspect_ratio;
|
|
if(ideal_width > width) {
|
|
start_x -= (ideal_width - width) * 0.5f;
|
|
width = ideal_width;
|
|
} else {
|
|
float ideal_height = width / adjusted_aspect_ratio;
|
|
start_y -= (ideal_height - height) * 0.5f;
|
|
height = ideal_height;
|
|
}
|
|
|
|
return Outputs::Display::Rect(start_x, start_y, width, height);
|
|
}
|
|
|
|
Outputs::Display::ScanStatus CRT::get_scaled_scan_status() const {
|
|
Outputs::Display::ScanStatus status;
|
|
status.field_duration = float(vertical_flywheel_->get_locked_period()) / float(time_multiplier_);
|
|
status.field_duration_gradient = float(vertical_flywheel_->get_last_period_adjustment()) / float(time_multiplier_);
|
|
status.retrace_duration = float(vertical_flywheel_->get_retrace_period()) / float(time_multiplier_);
|
|
status.current_position = float(vertical_flywheel_->get_current_phase()) / float(vertical_flywheel_->get_locked_scan_period());
|
|
status.hsync_count = vertical_flywheel_->get_number_of_retraces();
|
|
return status;
|
|
}
|