mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-08 17:29:34 +00:00
375 lines
13 KiB
C++
375 lines
13 KiB
C++
//
|
||
// MFP68901.cpp
|
||
// Clock Signal
|
||
//
|
||
// Created by Thomas Harte on 06/10/2019.
|
||
// Copyright © 2019 Thomas Harte. All rights reserved.
|
||
//
|
||
|
||
#include "MFP68901.hpp"
|
||
|
||
#include <algorithm>
|
||
#include <cstring>
|
||
|
||
#ifndef NDEBUG
|
||
#define NDEBUG
|
||
#endif
|
||
|
||
#define LOG_PREFIX "[MFP] "
|
||
#include "../../Outputs/Log.hpp"
|
||
|
||
using namespace Motorola::MFP68901;
|
||
|
||
ClockingHint::Preference MFP68901::preferred_clocking() {
|
||
// Rule applied: if any timer is actively running and permitted to produce an
|
||
// interrupt, request real-time running.
|
||
return
|
||
(timers_[0].mode >= TimerMode::Delay && interrupt_enable_&Interrupt::TimerA) ||
|
||
(timers_[1].mode >= TimerMode::Delay && interrupt_enable_&Interrupt::TimerB) ||
|
||
(timers_[2].mode >= TimerMode::Delay && interrupt_enable_&Interrupt::TimerC) ||
|
||
(timers_[3].mode >= TimerMode::Delay && interrupt_enable_&Interrupt::TimerD)
|
||
? ClockingHint::Preference::RealTime : ClockingHint::Preference::JustInTime;
|
||
}
|
||
|
||
uint8_t MFP68901::read(int address) {
|
||
address &= 0x1f;
|
||
|
||
// Interrupt block: various bits of state can be read, all passively.
|
||
if(address >= 0x03 && address <= 0x0b) {
|
||
const int shift = (address&1) << 3;
|
||
switch(address) {
|
||
case 0x03: case 0x04: return uint8_t(interrupt_enable_ >> shift);
|
||
case 0x05: case 0x06: return uint8_t(interrupt_pending_ >> shift);
|
||
case 0x07: case 0x08: return uint8_t(interrupt_in_service_ >> shift);
|
||
case 0x09: case 0x0a: return uint8_t(interrupt_mask_ >> shift);
|
||
case 0x0b: return interrupt_vector_;
|
||
|
||
default: break;
|
||
}
|
||
}
|
||
|
||
switch(address) {
|
||
// GPIP block: input, and configured active edge and direction values.
|
||
case 0x00: return (gpip_input_ & ~gpip_direction_) | (gpip_output_ & gpip_direction_);
|
||
case 0x01: return gpip_active_edge_;
|
||
case 0x02: return gpip_direction_;
|
||
|
||
/* Interrupt block dealt with above. */
|
||
default: break;
|
||
|
||
// Timer block: read back A, B and C/D control, and read current timer values.
|
||
case 0x0c: case 0x0d: return timer_ab_control_[address - 0xc];
|
||
case 0x0e: return timer_cd_control_;
|
||
case 0x0f: case 0x10:
|
||
case 0x11: case 0x12: return get_timer_data(address - 0xf);
|
||
|
||
// USART block: TODO.
|
||
case 0x13: LOG("Read: sync character generator"); break;
|
||
case 0x14: LOG("Read: USART control"); break;
|
||
case 0x15: LOG("Read: receiver status"); break;
|
||
case 0x16: LOG("Read: transmitter status"); break;
|
||
case 0x17: LOG("Read: USART data"); break;
|
||
}
|
||
return 0x00;
|
||
}
|
||
|
||
void MFP68901::write(int address, uint8_t value) {
|
||
address &= 0x1f;
|
||
|
||
// Interrupt block: enabled and masked interrupts can be set; pending and in-service interrupts can be masked.
|
||
if(address >= 0x03 && address <= 0x0b) {
|
||
const int shift = (address&1) << 3;
|
||
const int preserve = 0xff00 >> shift;
|
||
const int word_value = value << shift;
|
||
|
||
switch(address) {
|
||
default: break;
|
||
case 0x03: case 0x04: // Adjust enabled interrupts; disabled ones also cease to be pending.
|
||
interrupt_enable_ = (interrupt_enable_ & preserve) | word_value;
|
||
interrupt_pending_ &= interrupt_enable_;
|
||
break;
|
||
case 0x05: case 0x06: // Resolve pending interrupts.
|
||
interrupt_pending_ &= (preserve | word_value);
|
||
break;
|
||
case 0x07: case 0x08: // Resolve in-service interrupts.
|
||
interrupt_in_service_ &= (preserve | word_value);
|
||
break;
|
||
case 0x09: case 0x0a: // Adjust interrupt mask.
|
||
interrupt_mask_ = (interrupt_mask_ & preserve) | word_value;
|
||
break;
|
||
case 0x0b: // Set the interrupt vector, possibly changing end-of-interrupt mode.
|
||
interrupt_vector_ = value;
|
||
|
||
// If automatic end-of-interrupt mode has now been enabled, clear
|
||
// the in-process mask and re-evaluate.
|
||
if(interrupt_vector_ & 0x08) return;
|
||
interrupt_in_service_ = 0;
|
||
break;
|
||
}
|
||
|
||
// Whatever just happened may have affected the state of the interrupt line.
|
||
update_interrupts();
|
||
update_clocking_observer();
|
||
return;
|
||
}
|
||
|
||
constexpr int timer_prescales[] = {
|
||
1, 4, 10, 16, 50, 64, 100, 200
|
||
};
|
||
|
||
switch(address) {
|
||
// GPIP block: output and configuration of active edge and direction values.
|
||
case 0x00:
|
||
gpip_output_ = value;
|
||
break;
|
||
case 0x01:
|
||
gpip_active_edge_ = value;
|
||
reevaluate_gpip_interrupts();
|
||
break;
|
||
case 0x02:
|
||
gpip_direction_ = value;
|
||
reevaluate_gpip_interrupts();
|
||
break;
|
||
|
||
/* Interrupt block dealt with above. */
|
||
default: break;
|
||
|
||
// Timer block.
|
||
case 0x0c:
|
||
case 0x0d: {
|
||
const auto timer = address - 0xc;
|
||
const bool reset = value & 0x10;
|
||
timer_ab_control_[timer] = value;
|
||
switch(value & 0xf) {
|
||
case 0x0: set_timer_mode(timer, TimerMode::Stopped, 1, reset); break;
|
||
case 0x1: set_timer_mode(timer, TimerMode::Delay, 4, reset); break;
|
||
case 0x2: set_timer_mode(timer, TimerMode::Delay, 10, reset); break;
|
||
case 0x3: set_timer_mode(timer, TimerMode::Delay, 16, reset); break;
|
||
case 0x4: set_timer_mode(timer, TimerMode::Delay, 50, reset); break;
|
||
case 0x5: set_timer_mode(timer, TimerMode::Delay, 64, reset); break;
|
||
case 0x6: set_timer_mode(timer, TimerMode::Delay, 100, reset); break;
|
||
case 0x7: set_timer_mode(timer, TimerMode::Delay, 200, reset); break;
|
||
case 0x8: set_timer_mode(timer, TimerMode::EventCount, 1, reset); break;
|
||
case 0x9: set_timer_mode(timer, TimerMode::PulseWidth, 4, reset); break;
|
||
case 0xa: set_timer_mode(timer, TimerMode::PulseWidth, 10, reset); break;
|
||
case 0xb: set_timer_mode(timer, TimerMode::PulseWidth, 16, reset); break;
|
||
case 0xc: set_timer_mode(timer, TimerMode::PulseWidth, 50, reset); break;
|
||
case 0xd: set_timer_mode(timer, TimerMode::PulseWidth, 64, reset); break;
|
||
case 0xe: set_timer_mode(timer, TimerMode::PulseWidth, 100, reset); break;
|
||
case 0xf: set_timer_mode(timer, TimerMode::PulseWidth, 200, reset); break;
|
||
}
|
||
} break;
|
||
case 0x0e:
|
||
timer_cd_control_ = value;
|
||
set_timer_mode(3, (value & 7) ? TimerMode::Delay : TimerMode::Stopped, timer_prescales[value & 7], false);
|
||
set_timer_mode(2, ((value >> 4) & 7) ? TimerMode::Delay : TimerMode::Stopped, timer_prescales[(value >> 4) & 7], false);
|
||
break;
|
||
case 0x0f: case 0x10: case 0x11: case 0x12:
|
||
set_timer_data(address - 0xf, value);
|
||
break;
|
||
|
||
// USART block: TODO.
|
||
case 0x13: LOG("Write: sync character generator"); break;
|
||
case 0x14: LOG("Write: USART control"); break;
|
||
case 0x15: LOG("Write: receiver status"); break;
|
||
case 0x16: LOG("Write: transmitter status"); break;
|
||
case 0x17: LOG("Write: USART data"); break;
|
||
}
|
||
|
||
update_clocking_observer();
|
||
}
|
||
|
||
void MFP68901::run_for(HalfCycles time) {
|
||
cycles_left_ += time;
|
||
|
||
const int cycles = int(cycles_left_.flush<Cycles>().as_integral());
|
||
if(!cycles) return;
|
||
|
||
for(int c = 0; c < 4; ++c) {
|
||
if(timers_[c].mode >= TimerMode::Delay) {
|
||
// This code applies the timer prescaling only. prescale_count is used to count
|
||
// upwards rather than downwards for simplicity, but on the real hardware it's
|
||
// pretty safe to assume it actually counted downwards. So the clamp to 0 is
|
||
// because gymnastics may need to occur when the prescale value is altered, e.g.
|
||
// if a prescale of 256 is set and the prescale_count is currently 2 then the
|
||
// counter should roll over in 254 cycles. If the user at that point changes the
|
||
// prescale_count to 1 then the counter will need to be altered to -253 and
|
||
// allowed to keep counting up until it crosses both 0 and 1.
|
||
const int dividend = timers_[c].prescale_count + cycles;
|
||
const int decrements = std::max(dividend / timers_[c].prescale, 0);
|
||
if(decrements) {
|
||
decrement_timer(c, decrements);
|
||
timers_[c].prescale_count = dividend % timers_[c].prescale;
|
||
} else {
|
||
timers_[c].prescale_count += cycles;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
HalfCycles MFP68901::get_next_sequence_point() {
|
||
return HalfCycles(-1);
|
||
}
|
||
|
||
// MARK: - Timers
|
||
|
||
void MFP68901::set_timer_mode(int timer, TimerMode mode, int prescale, bool reset_timer) {
|
||
LOG("Timer " << timer << " mode set: " << int(mode) << "; prescale: " << prescale);
|
||
timers_[timer].mode = mode;
|
||
if(reset_timer) {
|
||
timers_[timer].prescale_count = 0;
|
||
timers_[timer].value = timers_[timer].reload_value;
|
||
} else {
|
||
// This hoop is because the prescale_count here goes upward but I'm assuming it goes downward in
|
||
// real hardware. Therefore this deals with the "switched to a lower prescaling" case whereby the
|
||
// old cycle should be allowed naturally to expire.
|
||
timers_[timer].prescale_count = prescale - (timers_[timer].prescale - timers_[timer].prescale_count);
|
||
}
|
||
|
||
timers_[timer].prescale = prescale;
|
||
}
|
||
|
||
void MFP68901::set_timer_data(int timer, uint8_t value) {
|
||
if(timers_[timer].mode == TimerMode::Stopped) {
|
||
timers_[timer].value = value;
|
||
}
|
||
timers_[timer].reload_value = value;
|
||
}
|
||
|
||
uint8_t MFP68901::get_timer_data(int timer) {
|
||
return timers_[timer].value;
|
||
}
|
||
|
||
void MFP68901::set_timer_event_input(int channel, bool value) {
|
||
if(timers_[channel].event_input == value) return;
|
||
|
||
timers_[channel].event_input = value;
|
||
if(timers_[channel].mode == TimerMode::EventCount && (value == !!(gpip_active_edge_ & (0x10 >> channel)))) {
|
||
// "The active state of the signal on TAI or TBI is dependent upon the associated
|
||
// Interrupt Channel’s edge bit (GPIP 4 for TAI and GPIP 3 for TBI [...] ).
|
||
// If the edge bit associated with the TAI or TBI input is a one, it will be active high.
|
||
decrement_timer(channel, 1);
|
||
}
|
||
|
||
// TODO:
|
||
//
|
||
// Altering the edge bit while the timer is in the event count mode can produce a count pulse.
|
||
// The interrupt channel associated with the input (I3 for I4 for TAI) is allowed to function normally.
|
||
// To count transitions reliably, the input must remain in each state (1/O) for a length of time equal
|
||
// to four periods of the timer clock.
|
||
//
|
||
// (the final bit probably explains 13 cycles of the DE to interrupt latency; not sure about the other ~15)
|
||
}
|
||
|
||
void MFP68901::decrement_timer(int timer, int amount) {
|
||
while(amount--) {
|
||
--timers_[timer].value;
|
||
if(timers_[timer].value < 1) {
|
||
switch(timer) {
|
||
case 0: begin_interrupts(Interrupt::TimerA); break;
|
||
case 1: begin_interrupts(Interrupt::TimerB); break;
|
||
case 2: begin_interrupts(Interrupt::TimerC); break;
|
||
case 3: begin_interrupts(Interrupt::TimerD); break;
|
||
}
|
||
|
||
// Re: reloading when in event counting mode; I found the data sheet thoroughly unclear on
|
||
// this, but it appears empirically to be correct. See e.g. Pompey Pirates menu 27.
|
||
if(timers_[timer].mode == TimerMode::Delay || timers_[timer].mode == TimerMode::EventCount) {
|
||
timers_[timer].value += timers_[timer].reload_value; // TODO: properly.
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// MARK: - GPIP
|
||
void MFP68901::set_port_input(uint8_t input) {
|
||
gpip_input_ = input;
|
||
reevaluate_gpip_interrupts();
|
||
}
|
||
|
||
uint8_t MFP68901::get_port_output() {
|
||
return 0xff; // TODO.
|
||
}
|
||
|
||
void MFP68901::reevaluate_gpip_interrupts() {
|
||
const uint8_t gpip_state = (gpip_input_ & ~gpip_direction_) ^ gpip_active_edge_;
|
||
|
||
// An interrupt is detected on any falling edge.
|
||
const uint8_t new_interrupt_mask = (gpip_state ^ gpip_interrupt_state_) & gpip_interrupt_state_;
|
||
if(new_interrupt_mask) {
|
||
begin_interrupts(
|
||
(new_interrupt_mask & 0x0f) |
|
||
((new_interrupt_mask & 0x30) << 2) |
|
||
((new_interrupt_mask & 0xc0) << 8)
|
||
);
|
||
}
|
||
gpip_interrupt_state_ = gpip_state;
|
||
}
|
||
|
||
// MARK: - Interrupts
|
||
|
||
void MFP68901::begin_interrupts(int interrupt) {
|
||
interrupt_pending_ |= interrupt & interrupt_enable_;
|
||
update_interrupts();
|
||
}
|
||
|
||
void MFP68901::end_interrupts(int interrupt) {
|
||
interrupt_pending_ &= ~interrupt;
|
||
update_interrupts();
|
||
}
|
||
|
||
void MFP68901::update_interrupts() {
|
||
const auto old_interrupt_line = interrupt_line_;
|
||
const auto firing_interrupts = interrupt_pending_ & interrupt_mask_;
|
||
|
||
if(!firing_interrupts) {
|
||
interrupt_line_ = false;
|
||
} else {
|
||
if(interrupt_vector_ & 0x8) {
|
||
// Software interrupt mode: permit only if neither this interrupt
|
||
// nor a higher interrupt is currently in service.
|
||
const int highest_bit = msb16(firing_interrupts);
|
||
interrupt_line_ = !(interrupt_in_service_ & ~(highest_bit + highest_bit - 1));
|
||
} else {
|
||
// Auto-interrupt mode; just signal.
|
||
interrupt_line_ = true;
|
||
}
|
||
}
|
||
|
||
// Update the delegate if necessary.
|
||
if(interrupt_delegate_ && interrupt_line_ != old_interrupt_line) {
|
||
interrupt_delegate_->mfp68901_did_change_interrupt_status(this);
|
||
}
|
||
}
|
||
|
||
bool MFP68901::get_interrupt_line() {
|
||
return interrupt_line_;
|
||
}
|
||
|
||
int MFP68901::acknowledge_interrupt() {
|
||
if(!(interrupt_pending_ & interrupt_mask_)) {
|
||
return NoAcknowledgement;
|
||
}
|
||
|
||
const int mask = msb16(interrupt_pending_ & interrupt_mask_);
|
||
|
||
// Clear the pending bit regardless.
|
||
interrupt_pending_ &= ~mask;
|
||
|
||
// If this is software interrupt mode, set the in-service bit.
|
||
if(interrupt_vector_ & 0x8) {
|
||
interrupt_in_service_ |= mask;
|
||
}
|
||
|
||
update_interrupts();
|
||
|
||
int selected = 0;
|
||
while((1 << selected) != mask) ++selected;
|
||
// LOG("Interrupt acknowledged: " << selected);
|
||
return (interrupt_vector_ & 0xf0) | uint8_t(selected);
|
||
}
|
||
|
||
void MFP68901::set_interrupt_delegate(InterruptDelegate *delegate) {
|
||
interrupt_delegate_ = delegate;
|
||
}
|