1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-15 20:31:36 +00:00
CLK/Outputs/CRT/Internals/CRTOpenGL.hpp
2018-07-28 10:52:34 -04:00

183 lines
5.9 KiB
C++

//
// CRTOpenGL.hpp
// Clock Signal
//
// Created by Thomas Harte on 13/02/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#ifndef CRTOpenGL_h
#define CRTOpenGL_h
#include "../CRTTypes.hpp"
#include "CRTConstants.hpp"
#include "OpenGL.hpp"
#include "TextureTarget.hpp"
#include "Shaders/Shader.hpp"
#include "ArrayBuilder.hpp"
#include "TextureBuilder.hpp"
#include "Shaders/OutputShader.hpp"
#include "Shaders/IntermediateShader.hpp"
#include "Rectangle.hpp"
#include <mutex>
#include <vector>
namespace Outputs {
namespace CRT {
class OpenGLOutputBuilder {
private:
// colour information
ColourSpace colour_space_;
unsigned int colour_cycle_numerator_;
unsigned int colour_cycle_denominator_;
VideoSignal video_signal_;
float gamma_;
// timing information to allow reasoning about input information
unsigned int input_frequency_;
unsigned int cycles_per_line_;
unsigned int height_of_display_;
unsigned int horizontal_scan_period_;
unsigned int vertical_scan_period_;
unsigned int vertical_period_divider_;
// The user-supplied visible area
Rect visible_area_;
// Other things the caller may have provided.
std::string composite_shader_;
std::string svideo_shader_;
std::string rgb_shader_;
GLint target_framebuffer_ = 0;
// Methods used by the OpenGL code
void prepare_output_shader();
void prepare_rgb_input_shaders();
void prepare_svideo_input_shaders();
void prepare_composite_input_shaders();
void prepare_output_vertex_array();
void prepare_source_vertex_array();
// the run and input data buffers
std::mutex output_mutex_;
std::mutex draw_mutex_;
// transient buffers indicating composite data not yet decoded
GLsizei composite_src_output_y_;
std::unique_ptr<OpenGL::OutputShader> output_shader_program_;
std::unique_ptr<OpenGL::IntermediateShader> composite_input_shader_program_;
std::unique_ptr<OpenGL::IntermediateShader> composite_separation_filter_program_;
std::unique_ptr<OpenGL::IntermediateShader> composite_chrominance_filter_shader_program_;
std::unique_ptr<OpenGL::IntermediateShader> svideo_input_shader_program_;
std::unique_ptr<OpenGL::IntermediateShader> rgb_input_shader_program_;
std::unique_ptr<OpenGL::IntermediateShader> rgb_filter_shader_program_;
std::unique_ptr<OpenGL::TextureTarget> composite_texture_; // receives raw composite levels
std::unique_ptr<OpenGL::TextureTarget> separated_texture_; // receives filtered Y in the R channel plus unfiltered but demodulated chrominance in G and B
std::unique_ptr<OpenGL::TextureTarget> filtered_texture_; // receives filtered YIQ or YUV
std::unique_ptr<OpenGL::TextureTarget> work_texture_; // used for all intermediate rendering if texture fences are supported
std::unique_ptr<OpenGL::TextureTarget> framebuffer_; // the current pixel output
GLuint output_vertex_array_;
GLuint source_vertex_array_;
unsigned int last_output_width_, last_output_height_;
void set_timing_uniforms();
void set_colour_space_uniforms();
void set_gamma();
void establish_OpenGL_state();
void reset_all_OpenGL_state();
GLsync fence_;
float get_composite_output_width() const;
void set_output_shader_width();
float integer_coordinate_multiplier_ = 1.0f;
// Maintain a couple of rectangles for masking off the extreme edge of the display;
// this is a bit of a cheat: there's some tolerance in when a sync pulse will be
// generated. So it might be slightly later than expected. Which might cause a scan
// that is slightly longer than expected. Which means that from then on, those scans
// might have touched parts of the extreme edge of the display which are not rescanned.
// Which because I've implemented persistence-of-vision as an in-buffer effect will
// cause perpetual persistence.
//
// The fix: just always treat that area as invisible. This is acceptable thanks to
// the concept of overscan. One is allowed not to display extreme ends of the image.
std::unique_ptr<OpenGL::Rectangle> right_overlay_;
public:
// These two are protected by output_mutex_.
TextureBuilder texture_builder;
ArrayBuilder array_builder;
OpenGLOutputBuilder(std::size_t bytes_per_pixel);
~OpenGLOutputBuilder();
inline void set_colour_format(ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator) {
std::lock_guard<std::mutex> output_guard(output_mutex_);
colour_space_ = colour_space;
colour_cycle_numerator_ = colour_cycle_numerator;
colour_cycle_denominator_ = colour_cycle_denominator;
set_colour_space_uniforms();
}
inline void set_visible_area(Rect visible_area) {
visible_area_ = visible_area;
}
inline void set_gamma(float gamma) {
gamma_ = gamma;
set_gamma();
}
inline std::unique_lock<std::mutex> get_output_lock() {
return std::unique_lock<std::mutex>(output_mutex_);
}
inline VideoSignal get_output_device() {
return video_signal_;
}
inline uint16_t get_composite_output_y() {
return static_cast<uint16_t>(composite_src_output_y_);
}
inline bool composite_output_buffer_is_full() {
return composite_src_output_y_ == IntermediateBufferHeight;
}
inline void increment_composite_output_y() {
if(!composite_output_buffer_is_full())
composite_src_output_y_++;
}
void set_target_framebuffer(GLint);
void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty);
void set_openGL_context_will_change(bool should_delete_resources);
void set_composite_sampling_function(const std::string &);
void set_svideo_sampling_function(const std::string &);
void set_rgb_sampling_function(const std::string &);
void set_video_signal(VideoSignal);
void set_timing(unsigned int input_frequency, unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider);
void set_integer_coordinate_multiplier(float multiplier);
};
}
}
#endif /* CRTOpenGL_h */