1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-28 22:30:30 +00:00
CLK/Outputs/CRT/Internals/CRTOpenGL.hpp

237 lines
7.3 KiB
C++

//
// CRTOpenGL.hpp
// Clock Signal
//
// Created by Thomas Harte on 13/02/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#ifndef CRTOpenGL_h
#define CRTOpenGL_h
#include "../CRTTypes.hpp"
#include "OpenGL.hpp"
#include "TextureTarget.hpp"
#include "Shader.hpp"
#include "CRTInputBufferBuilder.hpp"
#include "CRTRunBuilder.hpp"
#include <mutex>
namespace Outputs {
namespace CRT {
// Output vertices are those used to copy from an input buffer — whether it describes data that maps directly to RGB
// or is one of the intermediate buffers that we've used to convert from composite towards RGB.
const size_t OutputVertexOffsetOfPosition = 0;
const size_t OutputVertexOffsetOfTexCoord = 4;
const size_t OutputVertexOffsetOfTimestamp = 8;
const size_t OutputVertexOffsetOfLateral = 12;
const size_t OutputVertexSize = 16;
// Input vertices, used only in composite mode, map from the input buffer to temporary buffer locations; such
// remapping occurs to ensure a continous stream of data for each scan, giving correct out-of-bounds behaviour
const size_t InputVertexOffsetOfInputPosition = 0;
const size_t InputVertexOffsetOfOutputPosition = 4;
const size_t InputVertexOffsetOfPhaseAndAmplitude = 8;
const size_t InputVertexOffsetOfPhaseTime = 12;
const size_t InputVertexSize = 16;
// These constants hold the size of the rolling buffer to which the CPU writes
const int InputBufferBuilderWidth = 2048;
const int InputBufferBuilderHeight = 1024;
// This is the size of the intermediate buffers used during composite to RGB conversion
const int IntermediateBufferWidth = 2048;
const int IntermediateBufferHeight = 2048;
// Runs are divided discretely by vertical syncs in order to put a usable bounds on the uniform used to track
// run age; that therefore creates a discrete number of fields that are stored. This number should be the
// number of historic fields that are required fully to
const int NumberOfFields = 3;
class OpenGLOutputBuilder {
private:
// colour information
ColourSpace _colour_space;
unsigned int _colour_cycle_numerator;
unsigned int _colour_cycle_denominator;
OutputDevice _output_device;
// timing information to allow reasoning about input information
unsigned int _cycles_per_line;
unsigned int _height_of_display;
unsigned int _horizontal_scan_period;
unsigned int _vertical_scan_period;
unsigned int _vertical_period_divider;
// The user-supplied visible area
Rect _visible_area;
// Other things the caller may have provided.
char *_composite_shader;
char *_rgb_shader;
// Methods used by the OpenGL code
void prepare_rgb_output_shader();
void prepare_composite_input_shader();
void prepare_output_vertex_array();
void push_size_uniforms(unsigned int output_width, unsigned int output_height);
// the run and input data buffers
std::unique_ptr<CRTInputBufferBuilder> _buffer_builder;
CRTRunBuilder **_run_builders;
int _run_write_pointer;
std::shared_ptr<std::mutex> _output_mutex;
// transient buffers indicating composite data not yet decoded
std::unique_ptr<CRTRunBuilder> _composite_src_runs;
uint16_t _composite_src_output_y;
char *get_output_vertex_shader();
char *get_output_fragment_shader(const char *sampling_function);
char *get_rgb_output_fragment_shader();
char *get_composite_output_fragment_shader();
char *get_input_vertex_shader();
char *get_input_fragment_shader();
char *get_compound_shader(const char *base, const char *insert);
std::unique_ptr<OpenGL::Shader> rgb_shader_program;
std::unique_ptr<OpenGL::Shader> composite_input_shader_program, composite_output_shader_program;
GLuint output_array_buffer, output_vertex_array;
size_t output_vertices_per_slice;
GLint windowSizeUniform, timestampBaseUniform;
GLint boundsOriginUniform, boundsSizeUniform;
GLuint textureName, shadowMaskTextureName;
GLuint defaultFramebuffer;
std::unique_ptr<OpenGL::TextureTarget> compositeTexture; // receives raw composite levels
std::unique_ptr<OpenGL::TextureTarget> filteredYTexture; // receives filtered Y in the R channel plus unfiltered I/U and Q/V in G and B
std::unique_ptr<OpenGL::TextureTarget> filteredTexture; // receives filtered YIQ or YUV
public:
OpenGLOutputBuilder(unsigned int number_of_buffers, va_list sizes);
~OpenGLOutputBuilder();
inline void set_colour_format(ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{
_colour_space = colour_space;
_colour_cycle_numerator = colour_cycle_numerator;
_colour_cycle_denominator = colour_cycle_denominator;
}
inline void set_visible_area(Rect visible_area)
{
_visible_area = visible_area;
}
inline uint8_t *get_next_input_run()
{
_output_mutex->lock();
return (_output_device == Monitor) ? _run_builders[_run_write_pointer]->get_next_run(6) : _composite_src_runs->get_next_run(2);
}
inline void complete_input_run()
{
_output_mutex->unlock();
}
inline uint8_t *get_next_output_run()
{
_output_mutex->lock();
return (_output_device == Monitor) ? _run_builders[_run_write_pointer]->get_next_run(6) : _composite_src_runs->get_next_run(2);
}
inline void complete_output_run()
{
}
inline OutputDevice get_output_device()
{
return _output_device;
}
inline uint32_t get_current_field_time()
{
return _run_builders[_run_write_pointer]->duration;
}
inline void add_to_field_time(uint32_t amount)
{
_run_builders[_run_write_pointer]->duration += amount;
}
inline uint16_t get_composite_output_y()
{
return _composite_src_output_y;
}
inline void increment_composite_output_y()
{
_composite_src_output_y = (_composite_src_output_y + 1) % IntermediateBufferHeight;
}
inline void increment_field()
{
_run_write_pointer = (_run_write_pointer + 1)%NumberOfFields;
_run_builders[_run_write_pointer]->reset();
}
inline void allocate_write_area(size_t required_length)
{
_output_mutex->lock();
_buffer_builder->allocate_write_area(required_length);
_output_mutex->unlock();
}
inline void reduce_previous_allocation_to(size_t actual_length)
{
_buffer_builder->reduce_previous_allocation_to(actual_length);
}
inline uint8_t *get_write_target_for_buffer(int buffer)
{
return _buffer_builder->get_write_target_for_buffer(buffer);
}
inline uint16_t get_last_write_x_posiiton()
{
return _buffer_builder->_write_x_position;
}
inline uint16_t get_last_write_y_posiiton()
{
return _buffer_builder->_write_y_position;
}
void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty);
void set_openGL_context_will_change(bool should_delete_resources);
void set_composite_sampling_function(const char *shader);
void set_rgb_sampling_function(const char *shader);
void set_output_device(OutputDevice output_device);
inline void set_timing(unsigned int cycles_per_line, unsigned int height_of_display, unsigned int horizontal_scan_period, unsigned int vertical_scan_period, unsigned int vertical_period_divider)
{
_cycles_per_line = cycles_per_line;
_height_of_display = height_of_display;
_horizontal_scan_period = horizontal_scan_period;
_vertical_scan_period = vertical_scan_period;
_vertical_period_divider = vertical_period_divider;
// TODO: update related uniforms
}
};
}
}
#endif /* CRTOpenGL_h */