1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Components/8272/i8272.cpp

291 lines
8.1 KiB
C++

//
// i8272.cpp
// Clock Signal
//
// Created by Thomas Harte on 05/08/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "i8272.hpp"
#include <cstdio>
using namespace Intel;
namespace {
const uint8_t StatusRQM = 0x80; // Set: ready to send or receive from processor.
const uint8_t StatusDIO = 0x40; // Set: data is expected to be taken from the 8272 by the processor.
const uint8_t StatusNDM = 0x20; // Set: the execution phase of a data transfer command is ongoing and DMA mode is disabled.
const uint8_t StatusD3B = 0x08; // Set: drive 3 is seeking.
const uint8_t StatusD2B = 0x04; // Set: drive 2 is seeking.
const uint8_t StatusD1B = 0x02; // Set: drive 1 is seeking.
const uint8_t StatusD0B = 0x01; // Set: drive 0 is seeking.
}
i8272::i8272(Cycles clock_rate, int clock_rate_multiplier, int revolutions_per_minute) :
Storage::Disk::MFMController(clock_rate, clock_rate_multiplier, revolutions_per_minute),
main_status_(StatusRQM),
interesting_event_mask_((int)Event8272::CommandByte),
resume_point_(0),
delay_time_(0),
status_{0, 0, 0, 0} {
posit_event((int)Event8272::CommandByte);
}
void i8272::run_for(Cycles cycles) {
Storage::Disk::MFMController::run_for(cycles);
// check for an expired timer
if(delay_time_ > 0) {
if(cycles.as_int() >= delay_time_) {
delay_time_ = 0;
posit_event((int)Event8272::Timer);
} else {
delay_time_ -= cycles.as_int();
}
}
// update seek status of any drives presently seeking
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::Seeking) {
drives_[c].step_rate_counter += cycles.as_int();
int steps = drives_[c].step_rate_counter / (8000 * step_rate_time_);
drives_[c].step_rate_counter %= (8000 * step_rate_time_);
while(steps--) {
if(
(drives_[c].target_head_position == (int)drives_[c].head_position) ||
(drives_[c].drive.get_is_track_zero() && drives_[c].target_head_position == -1)) {
drives_[c].phase = Drive::CompletedSeeking;
status_[0] = (uint8_t)c | 0x20;
main_status_ &= ~(1 << c);
} else {
int direction = (drives_[c].target_head_position < drives_[c].head_position) ? -1 : 1;
drives_[c].drive.step(direction);
drives_[c].head_position += direction;
}
}
}
}
}
void i8272::set_register(int address, uint8_t value) {
// don't consider attempted sets to the status register
if(!address) return;
// if not ready for commands, do nothing
if(!(main_status_ & StatusRQM)) return;
// accumulate latest byte in the command byte sequence
command_.push_back(value);
posit_event((int)Event8272::CommandByte);
}
uint8_t i8272::get_register(int address) {
if(address) {
printf("8272 get data\n");
if(result_.empty()) return 0xff;
uint8_t result = result_.back();
result_.pop_back();
if(result_.empty()) posit_event((int)Event8272::ResultEmpty);
return result;
} else {
printf("8272 get main status\n");
return main_status_;
}
}
void i8272::set_disk(std::shared_ptr<Storage::Disk::Disk> disk, int drive) {
if(drive < 4 && drive >= 0) {
drives_[drive].drive.set_disk(disk);
}
}
#define BEGIN_SECTION() switch(resume_point_) { default:
#define END_SECTION() }
#define WAIT_FOR_EVENT(mask) resume_point_ = __LINE__; interesting_event_mask_ = (int)mask; return; case __LINE__:
void i8272::posit_event(int type) {
if(!(interesting_event_mask_ & type)) return;
interesting_event_mask_ &= ~type;
BEGIN_SECTION();
wait_for_command:
set_data_mode(Storage::Disk::MFMController::DataMode::Scanning);
command_.clear();
wait_for_complete_command_sequence:
main_status_ |= StatusRQM;
WAIT_FOR_EVENT(Event8272::CommandByte)
main_status_ &= ~StatusRQM;
switch(command_[0] & 0x1f) {
case 0x06: // read data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto read_data;
case 0x0b: // read deleted data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto read_deleted_data;
case 0x05: // write data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto write_data;
case 0x09: // write deleted data
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto write_deleted_data;
case 0x02: // read track
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto read_track;
case 0x0a: // read ID
if(command_.size() < 2) goto wait_for_complete_command_sequence;
goto read_id;
case 0x0d: // format track
if(command_.size() < 6) goto wait_for_complete_command_sequence;
goto format_track;
case 0x11: // scan low
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto scan_low;
case 0x19: // scan low or equal
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto scan_low_or_equal;
case 0x1d: // scan high or equal
if(command_.size() < 9) goto wait_for_complete_command_sequence;
goto scan_high_or_equal;
case 0x07: // recalibrate
if(command_.size() < 2) goto wait_for_complete_command_sequence;
goto recalibrate;
case 0x08: // sense interrupt status
goto sense_interrupt_status;
case 0x03: // specify
if(command_.size() < 3) goto wait_for_complete_command_sequence;
goto specify;
case 0x04: // sense drive status
if(command_.size() < 2) goto wait_for_complete_command_sequence;
goto sense_drive_status;
case 0x0f: // seek
if(command_.size() < 3) goto wait_for_complete_command_sequence;
goto seek;
default: // invalid
goto invalid;
}
read_data:
printf("Read data unimplemented!!\n");
goto wait_for_command;
read_deleted_data:
printf("Read deleted data unimplemented!!\n");
goto wait_for_command;
write_data:
printf("Write data unimplemented!!\n");
goto wait_for_command;
write_deleted_data:
printf("Write deleted data unimplemented!!\n");
goto wait_for_command;
read_track:
printf("Read track unimplemented!!\n");
goto wait_for_command;
read_id:
printf("Read ID unimplemented!!\n");
goto wait_for_command;
format_track:
printf("Fromat track unimplemented!!\n");
goto wait_for_command;
scan_low:
printf("Scan low unimplemented!!\n");
goto wait_for_command;
scan_low_or_equal:
printf("Scan low or equal unimplemented!!\n");
goto wait_for_command;
scan_high_or_equal:
printf("Scan high or equal unimplemented!!\n");
goto wait_for_command;
recalibrate:
printf("Recalibrate\n");
drives_[command_[1]&3].phase = Drive::Seeking;
drives_[command_[1]&3].permitted_steps = 77;
drives_[command_[1]&3].target_head_position = -1;
drives_[command_[1]&3].step_rate_counter = 0;
main_status_ |= (1 << command_[1]&3);
goto wait_for_command;
sense_interrupt_status:
printf("Sense interrupt status\n");
// Find the first drive that is in the CompletedSeeking state and return for that;
// if none has done so then return 0xff for the sake of returning something.
// TODO: verify that fallback.
{
int found_drive = -1;
for(int c = 0; c < 4; c++) {
if(drives_[c].phase == Drive::CompletedSeeking) {
found_drive = c;
break;
}
}
if(found_drive != -1) {
drives_[found_drive].phase = Drive::NotSeeking;
result_.push_back(drives_[found_drive].head_position);
}
}
result_.push_back(status_[0]);
goto post_result;
specify:
printf("Specify\n");
step_rate_time_ = command_[1] &0xf0; // i.e. 16 to 240m
head_unload_time_ = command_[1] & 0x0f; // i.e. 1 to 16ms
head_load_time_ = command_[2] & ~1; // i.e. 2 to 254 ms in increments of 2ms
dma_mode_ = !(command_[2] & 1);
goto wait_for_command;
sense_drive_status:
printf("Sense drive status\n");
result_.push_back(status_[3]);
goto post_result;
seek:
printf("Seek\n");
drives_[command_[1]&3].phase = Drive::Seeking;
drives_[command_[1]&3].permitted_steps = -1;
drives_[command_[1]&3].target_head_position = command_[2];
drives_[command_[1]&3].step_rate_counter = 0;
main_status_ |= (1 << command_[1]&3);
goto wait_for_command;
invalid:
// A no-op, causing the FDC to go back into standby mode.
goto wait_for_command;
post_result:
main_status_ |= StatusRQM | StatusDIO;
WAIT_FOR_EVENT(Event8272::ResultEmpty);
main_status_ &= ~StatusDIO;
goto wait_for_command;
END_SECTION()
}