1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-14 13:33:42 +00:00
CLK/Components/8530/z8530.cpp
2019-07-23 23:13:03 -04:00

269 lines
6.8 KiB
C++

//
// 8530.cpp
// Clock Signal
//
// Created by Thomas Harte on 07/06/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "z8530.hpp"
#include "../../Outputs/Log.hpp"
using namespace Zilog::SCC;
void z8530::reset() {
// TODO.
}
bool z8530::get_interrupt_line() {
return
(master_interrupt_control_ & 0x8) &&
(
channels_[0].get_interrupt_line() ||
channels_[1].get_interrupt_line()
);
}
std::uint8_t z8530::read(int address) {
if(address & 2) {
// Read data register for channel
return 0x00;
} else {
// Read control register for channel.
uint8_t result = 0;
switch(pointer_) {
default:
result = channels_[address & 1].read(address & 2, pointer_);
break;
case 2: // Handled non-symmetrically between channels.
if(address & 1) {
LOG("[SCC] Unimplemented: register 2 status bits");
} else {
result = interrupt_vector_;
// Modify the vector if permitted.
// if(master_interrupt_control_ & 1) {
for(int port = 0; port < 2; ++port) {
// TODO: the logic below assumes that DCD is the only implemented interrupt. Fix.
if(channels_[port].get_interrupt_line()) {
const uint8_t shift = 1 + 3*((master_interrupt_control_ & 0x10) >> 4);
const uint8_t mask = uint8_t(~(7 << shift));
result = uint8_t(
(result & mask) |
((1 | ((port == 1) ? 4 : 0)) << shift)
);
break;
}
}
// }
}
break;
}
pointer_ = 0;
update_delegate();
return result;
}
return 0x00;
}
void z8530::write(int address, std::uint8_t value) {
if(address & 2) {
// Write data register for channel.
} else {
// Write control register for channel.
// Most registers are per channel, but a couple are shared; sever
// them here.
switch(pointer_) {
default:
channels_[address & 1].write(address & 2, pointer_, value);
break;
case 2: // Interrupt vector register; shared between both channels.
interrupt_vector_ = value;
LOG("[SCC] Interrupt vector set to " << PADHEX(2) << int(value));
break;
case 9: // Master interrupt and reset register; also shared between both channels.
LOG("[SCC] Master interrupt and reset register: " << PADHEX(2) << int(value));
master_interrupt_control_ = value;
break;
}
// The pointer number resets to 0 after every access, but if it is zero
// then crib at least the next set of pointer bits (which, similarly, are shared
// between the two channels).
if(pointer_) {
pointer_ = 0;
} else {
// The lowest three bits are the lowest three bits of the pointer.
pointer_ = value & 7;
// If the command part of the byte is a 'point high', also set the
// top bit of the pointer.
if(((value >> 3)&7) == 1) {
pointer_ |= 8;
}
}
}
update_delegate();
}
void z8530::set_dcd(int port, bool level) {
channels_[port].set_dcd(level);
update_delegate();
}
// MARK: - Channel implementations
uint8_t z8530::Channel::read(bool data, uint8_t pointer) {
// If this is a data read, just return it.
if(data) {
return data_;
} else {
// Otherwise, this is a control read...
switch(pointer) {
default:
LOG("[SCC] Unrecognised control read from register " << int(pointer));
return 0x00;
case 0:
return dcd_ ? 0x8 : 0x0;
case 0xf:
return external_interrupt_status_;
}
}
return 0x00;
}
void z8530::Channel::write(bool data, uint8_t pointer, uint8_t value) {
if(data) {
data_ = value;
return;
} else {
switch(pointer) {
default:
LOG("[SCC] Unrecognised control write: " << PADHEX(2) << int(value) << " to register " << int(pointer));
break;
case 0x0: // Write register 0 — CRC reset and other functions.
// Decode CRC reset instructions.
switch(value >> 6) {
default: /* Do nothing. */ break;
case 1:
LOG("[SCC] TODO: reset Rx CRC checker.");
break;
case 2:
LOG("[SCC] TODO: reset Tx CRC checker.");
break;
case 3:
LOG("[SCC] TODO: reset Tx underrun/EOM latch.");
break;
}
// Decode command code.
switch((value >> 3)&7) {
default: /* Do nothing. */ break;
case 2:
// LOG("[SCC] reset ext/status interrupts.");
external_status_interrupt_ = false;
external_interrupt_status_ = 0;
break;
case 3:
LOG("[SCC] TODO: send abort (SDLC).");
break;
case 4:
LOG("[SCC] TODO: enable interrupt on next Rx character.");
break;
case 5:
LOG("[SCC] TODO: reset Tx interrupt pending.");
break;
case 6:
LOG("[SCC] TODO: reset error.");
break;
case 7:
LOG("[SCC] TODO: reset highest IUS.");
break;
}
break;
case 0x1: // Write register 1 — Transmit/Receive Interrupt and Data Transfer Mode Definition.
interrupt_mask_ = value;
break;
case 0x4: // Write register 4 — Transmit/Receive Miscellaneous Parameters and Modes.
// Bits 0 and 1 select parity mode.
if(!(value&1)) {
parity_ = Parity::Off;
} else {
parity_ = (value&2) ? Parity::Even : Parity::Odd;
}
// Bits 2 and 3 select stop bits.
switch((value >> 2)&3) {
default: stop_bits_ = StopBits::Synchronous; break;
case 1: stop_bits_ = StopBits::OneBit; break;
case 2: stop_bits_ = StopBits::OneAndAHalfBits; break;
case 3: stop_bits_ = StopBits::TwoBits; break;
}
// Bits 4 and 5 pick a sync mode.
switch((value >> 4)&3) {
default: sync_mode_ = Sync::Monosync; break;
case 1: sync_mode_ = Sync::Bisync; break;
case 2: sync_mode_ = Sync::SDLC; break;
case 3: sync_mode_ = Sync::External; break;
}
// Bits 6 and 7 select a clock rate multiplier, unless synchronous
// mode is enabled (and this is ignored if sync mode is external).
if(stop_bits_ == StopBits::Synchronous) {
clock_rate_multiplier_ = 1;
} else {
switch((value >> 6)&3) {
default: clock_rate_multiplier_ = 1; break;
case 1: clock_rate_multiplier_ = 16; break;
case 2: clock_rate_multiplier_ = 32; break;
case 3: clock_rate_multiplier_ = 64; break;
}
}
break;
case 0xf: // Write register 15 — External/Status Interrupt Control.
external_interrupt_mask_ = value;
break;
}
}
}
void z8530::Channel::set_dcd(bool level) {
if(dcd_ == level) return;
dcd_ = level;
if(external_interrupt_mask_ & 0x8) {
external_status_interrupt_ = true;
external_interrupt_status_ |= 0x8;
}
}
bool z8530::Channel::get_interrupt_line() {
return
(interrupt_mask_ & 1) && external_status_interrupt_;
// TODO: other potential causes of an interrupt.
}
void z8530::update_delegate() {
const bool interrupt_line = get_interrupt_line();
if(interrupt_line != previous_interrupt_line_) {
previous_interrupt_line_ = interrupt_line;
if(delegate_) delegate_->did_change_interrupt_status(this, interrupt_line);
}
}