mirror of
				https://github.com/TomHarte/CLK.git
				synced 2025-10-31 20:16:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			713 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			713 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| //  9918.cpp
 | |
| //  Clock Signal
 | |
| //
 | |
| //  Created by Thomas Harte on 25/11/2017.
 | |
| //  Copyright © 2017 Thomas Harte. All rights reserved.
 | |
| //
 | |
| 
 | |
| #include "9918.hpp"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| 
 | |
| using namespace TI;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
 | |
| 	uint32_t result = 0;
 | |
| 	uint8_t *const result_ptr = reinterpret_cast<uint8_t *>(&result);
 | |
| 	result_ptr[0] = r;
 | |
| 	result_ptr[1] = g;
 | |
| 	result_ptr[2] = b;
 | |
| 	result_ptr[3] = 0;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| const uint32_t palette[16] = {
 | |
| 	palette_pack(0, 0, 0),
 | |
| 	palette_pack(0, 0, 0),
 | |
| 	palette_pack(33, 200, 66),
 | |
| 	palette_pack(94, 220, 120),
 | |
| 
 | |
| 	palette_pack(84, 85, 237),
 | |
| 	palette_pack(125, 118, 252),
 | |
| 	palette_pack(212, 82, 77),
 | |
| 	palette_pack(66, 235, 245),
 | |
| 
 | |
| 	palette_pack(252, 85, 84),
 | |
| 	palette_pack(255, 121, 120),
 | |
| 	palette_pack(212, 193, 84),
 | |
| 	palette_pack(230, 206, 128),
 | |
| 
 | |
| 	palette_pack(33, 176, 59),
 | |
| 	palette_pack(201, 91, 186),
 | |
| 	palette_pack(204, 204, 204),
 | |
| 	palette_pack(255, 255, 255)
 | |
| };
 | |
| 
 | |
| const uint8_t StatusInterrupt = 0x80;
 | |
| const uint8_t StatusFifthSprite = 0x40;
 | |
| 
 | |
| const int StatusSpriteCollisionShift = 5;
 | |
| const uint8_t StatusSpriteCollision = 0x20;
 | |
| 
 | |
| struct ReverseTable {
 | |
| 	std::uint8_t map[256];
 | |
| 
 | |
| 	ReverseTable() {
 | |
| 		for(int c = 0; c < 256; ++c) {
 | |
| 			map[c] = static_cast<uint8_t>(
 | |
| 				((c & 0x80) >> 7) |
 | |
| 				((c & 0x40) >> 5) |
 | |
| 				((c & 0x20) >> 3) |
 | |
| 				((c & 0x10) >> 1) |
 | |
| 				((c & 0x08) << 1) |
 | |
| 				((c & 0x04) << 3) |
 | |
| 				((c & 0x02) << 5) |
 | |
| 				((c & 0x01) << 7)
 | |
| 			);
 | |
| 		}
 | |
| 	}
 | |
| } reverse_table;
 | |
| 
 | |
| // Bits are reversed in the internal mode value; they're stored
 | |
| // in the order M1 M2 M3. Hence the definitions below.
 | |
| enum ScreenMode {
 | |
| 	Text = 4,
 | |
| 	MultiColour = 2,
 | |
| 	ColouredText = 0,
 | |
| 	Graphics = 1
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| TMS9918Base::TMS9918Base() :
 | |
| 	// 342 internal cycles are 228/227.5ths of a line, so 341.25 cycles should be a whole
 | |
| 	// line. Therefore multiply everything by four, but set line length to 1365 rather than 342*4 = 1368.
 | |
| 	crt_(new Outputs::CRT::CRT(1365, 4, Outputs::CRT::DisplayType::NTSC60, 4)) {}
 | |
| 
 | |
| TMS9918::TMS9918(Personality p) {
 | |
| 	// Unimaginatively, this class just passes RGB through to the shader. Investigation is needed
 | |
| 	// into whether there's a more natural form.
 | |
| 	crt_->set_rgb_sampling_function(
 | |
| 		"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
 | |
| 		"{"
 | |
| 			"return texture(sampler, coordinate).rgb / vec3(255.0);"
 | |
| 		"}");
 | |
| 	crt_->set_output_device(Outputs::CRT::OutputDevice::Monitor);
 | |
| 	crt_->set_visible_area(Outputs::CRT::Rect(0.055f, 0.025f, 0.9f, 0.9f));
 | |
| 	crt_->set_input_gamma(2.8f);
 | |
| 
 | |
| 	// The TMS remains in-phase with the NTSC colour clock; this is an empirical measurement
 | |
| 	// intended to produce the correct relationship between the hard edges between pixels and
 | |
| 	// the colour clock. It was eyeballed rather than derived from any knowledge of the TMS
 | |
| 	// colour burst generator because I've yet to find any.
 | |
| 	crt_->set_immediate_default_phase(0.85f);
 | |
| }
 | |
| 
 | |
| Outputs::CRT::CRT *TMS9918::get_crt() {
 | |
| 	return crt_.get();
 | |
| }
 | |
| 
 | |
| void TMS9918Base::test_sprite(int sprite_number, int screen_row) {
 | |
| 	if(!(status_ & StatusFifthSprite)) {
 | |
| 		status_ = static_cast<uint8_t>((status_ & ~31) | sprite_number);
 | |
| 	}
 | |
| 	if(sprites_stopped_)
 | |
| 		return;
 | |
| 
 | |
| 	const int sprite_position = ram_[sprite_attribute_table_address_ + (sprite_number << 2)];
 | |
| 	// A sprite Y of 208 means "don't scan the list any further".
 | |
| 	if(sprite_position == 208) {
 | |
| 		sprites_stopped_ = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	const int sprite_row = (screen_row - sprite_position)&255;
 | |
| 	if(sprite_row < 0 || sprite_row >= sprite_height_) return;
 | |
| 
 | |
| 	const int active_sprite_slot = sprite_sets_[active_sprite_set_].active_sprite_slot;
 | |
| 	if(active_sprite_slot == 4) {
 | |
| 		status_ |= StatusFifthSprite;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	SpriteSet::ActiveSprite &sprite = sprite_sets_[active_sprite_set_].active_sprites[active_sprite_slot];
 | |
| 	sprite.index = sprite_number;
 | |
| 	sprite.row = sprite_row >> (sprites_magnified_ ? 1 : 0);
 | |
| 	sprite_sets_[active_sprite_set_].active_sprite_slot++;
 | |
| }
 | |
| 
 | |
| void TMS9918Base::get_sprite_contents(int field, int cycles_left, int screen_row) {
 | |
| 	int sprite_id = field / 6;
 | |
| 	field %= 6;
 | |
| 
 | |
| 	while(true) {
 | |
| 		const int cycles_in_sprite = std::min(cycles_left, 6 - field);
 | |
| 		cycles_left -= cycles_in_sprite;
 | |
| 		const int final_field = cycles_in_sprite + field;
 | |
| 
 | |
| 		assert(sprite_id < 4);
 | |
| 		SpriteSet::ActiveSprite &sprite = sprite_sets_[active_sprite_set_].active_sprites[sprite_id];
 | |
| 
 | |
| 		if(field < 4) {
 | |
| 			std::memcpy(
 | |
| 				&sprite.info[field],
 | |
| 				&ram_[sprite_attribute_table_address_ + (sprite.index << 2) + field],
 | |
| 				static_cast<size_t>(std::min(4, final_field) - field));
 | |
| 		}
 | |
| 
 | |
| 		field = std::min(4, final_field);
 | |
| 		const int sprite_offset = sprite.info[2] & ~(sprites_16x16_ ? 3 : 0);
 | |
| 		const int sprite_address = sprite_generator_table_address_ + (sprite_offset << 3) + sprite.row; // TODO: recalclate sprite.row from screen_row (?)
 | |
| 		while(field < final_field) {
 | |
| 			sprite.image[field - 4] = ram_[sprite_address + ((field - 4) << 4)];
 | |
| 			field++;
 | |
| 		}
 | |
| 
 | |
| 		if(!cycles_left) return;
 | |
| 		field = 0;
 | |
| 		sprite_id++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void TMS9918::run_for(const HalfCycles cycles) {
 | |
| 	// As specific as I've been able to get:
 | |
| 	// Scanline time is always 228 cycles.
 | |
| 	// PAL output is 313 lines total. NTSC output is 262 lines total.
 | |
| 	// Interrupt is signalled upon entering the lower border.
 | |
| 
 | |
| 	// Keep a count of cycles separate from internal counts to avoid
 | |
| 	// potential errors mapping back and forth.
 | |
| 	half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2);
 | |
| 
 | |
| 	// Convert 456 clocked half cycles per line to 342 internal cycles per line;
 | |
| 	// the internal clock is 1.5 times the nominal 3.579545 Mhz that I've advertised
 | |
| 	// for this part. So multiply by three quarters.
 | |
| 	int int_cycles = (cycles.as_int() * 3) + cycles_error_;
 | |
| 	cycles_error_ = int_cycles & 3;
 | |
| 	int_cycles >>= 2;
 | |
| 	if(!int_cycles) return;
 | |
| 
 | |
| 	while(int_cycles) {
 | |
| 		// Determine how much time has passed in the remainder of this line, and proceed.
 | |
| 		int cycles_left = std::min(342 - column_, int_cycles);
 | |
| 
 | |
| 
 | |
| 
 | |
| 		// ------------------------------------
 | |
| 		// Potentially perform a memory access.
 | |
| 		// ------------------------------------
 | |
| 		if(queued_access_ != MemoryAccess::None) {
 | |
| 			int time_until_access_slot = 0;
 | |
| 			switch(line_mode_) {
 | |
| 				case LineMode::Refresh:
 | |
| 					if(column_ < 53 || column_ >= 307) time_until_access_slot = column_&1;
 | |
| 					else time_until_access_slot = 3 - ((column_ - 53)&3);
 | |
| 					// i.e. 53 -> 3, 52 -> 2, 51 -> 1, 50 -> 0, etc
 | |
| 				break;
 | |
| 				case LineMode::Text:
 | |
| 					if(column_ < 59 || column_ >= 299) time_until_access_slot = column_&1;
 | |
| 					else time_until_access_slot = 5 - ((column_ + 3)%6);
 | |
| 					// i.e. 59 -> 3, 60 -> 2, 61 -> 1, etc
 | |
| 				break;
 | |
| 				case LineMode::Character:
 | |
| 					if(column_ < 9) time_until_access_slot = column_&1;
 | |
| 					else if(column_ < 30) time_until_access_slot = 30 - column_;
 | |
| 					else if(column_ < 37) time_until_access_slot = column_&1;
 | |
| 					else if(column_ < 311) time_until_access_slot = 31 - ((column_ + 7)&31);
 | |
| 					// i.e. 53 -> 3, 54 -> 2, 55 -> 1, 56 -> 0, 57 -> 31, etc
 | |
| 					else if(column_ < 313) time_until_access_slot = column_&1;
 | |
| 					else time_until_access_slot = 342 - column_;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if(cycles_left >= time_until_access_slot) {
 | |
| 				if(queued_access_ == MemoryAccess::Write) {
 | |
| 					ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
 | |
| 				} else {
 | |
| 					read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
 | |
| 				}
 | |
| 				ram_pointer_++;
 | |
| 				queued_access_ = MemoryAccess::None;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 
 | |
| 		column_ += cycles_left;		// column_ is now the column that has been reached in this line.
 | |
| 		int_cycles -= cycles_left;	// Count down duration to run for.
 | |
| 
 | |
| 
 | |
| 
 | |
| 		// ------------------------------
 | |
| 		// Perform video memory accesses.
 | |
| 		// ------------------------------
 | |
| 		if(((row_ < 192) || (row_ == frame_lines_-1)) && !blank_screen_) {
 | |
| 			const int sprite_row = (row_ < 192) ? row_ : -1;
 | |
| 			const int access_slot = column_ >> 1;	// There are only 171 available memory accesses per line.
 | |
| 			switch(line_mode_) {
 | |
| 				default: break;
 | |
| 
 | |
| 				case LineMode::Text:
 | |
| 					access_pointer_ = std::min(30, access_slot);
 | |
| 					if(access_pointer_ >= 30 && access_pointer_ < 150) {
 | |
| 						const int row_base = pattern_name_address_ + (row_ >> 3) * 40;
 | |
| 						const int end = std::min(150, access_slot);
 | |
| 
 | |
| 						// Pattern names are collected every third window starting from window 30.
 | |
| 						const int pattern_names_start = (access_pointer_ - 30 + 2) / 3;
 | |
| 						const int pattern_names_end = (end - 30 + 2) / 3;
 | |
| 						std::memcpy(&pattern_names_[pattern_names_start], &ram_[row_base + pattern_names_start], static_cast<size_t>(pattern_names_end - pattern_names_start));
 | |
| 
 | |
| 						// Patterns are collected every third window starting from window 32.
 | |
| 						const int pattern_buffer_start = (access_pointer_ - 32 + 2) / 3;
 | |
| 						const int pattern_buffer_end = (end - 32 + 2) / 3;
 | |
| 						for(int column = pattern_buffer_start; column < pattern_buffer_end; ++column) {
 | |
| 							pattern_buffer_[column] = ram_[pattern_generator_table_address_ + (pattern_names_[column] << 3) + (row_ & 7)];
 | |
| 						}
 | |
| 					}
 | |
| 				break;
 | |
| 
 | |
| 				case LineMode::Character:
 | |
| 					// Four access windows: no collection.
 | |
| 					if(access_pointer_ < 5)
 | |
| 						access_pointer_ = std::min(5, access_slot);
 | |
| 
 | |
| 					// Then ten access windows are filled with collection of sprite 3 and 4 details.
 | |
| 					if(access_pointer_ >= 5 && access_pointer_ < 15) {
 | |
| 						int end = std::min(15, access_slot);
 | |
| 						get_sprite_contents(access_pointer_ - 5 + 14, end - access_pointer_, sprite_row - 1);
 | |
| 						access_pointer_ = std::min(15, access_slot);
 | |
| 					}
 | |
| 
 | |
| 					// Four more access windows: no collection.
 | |
| 					if(access_pointer_ >= 15 && access_pointer_ < 19) {
 | |
| 						access_pointer_ = std::min(19, access_slot);
 | |
| 
 | |
| 						// Start new sprite set if this is location 19.
 | |
| 						if(access_pointer_ == 19) {
 | |
| 							active_sprite_set_ ^= 1;
 | |
| 							sprite_sets_[active_sprite_set_].active_sprite_slot = 0;
 | |
| 							sprites_stopped_ = false;
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					// Then eight access windows fetch the y position for the first eight sprites.
 | |
| 					while(access_pointer_ < 27 && access_pointer_ < access_slot) {
 | |
| 						test_sprite(access_pointer_ - 19, sprite_row);
 | |
| 						access_pointer_++;
 | |
| 					}
 | |
| 
 | |
| 					// The next 128 access slots are video and sprite collection interleaved.
 | |
| 					if(access_pointer_ >= 27 && access_pointer_ < 155) {
 | |
| 						int end = std::min(155, access_slot);
 | |
| 
 | |
| 						int row_base = pattern_name_address_;
 | |
| 						int pattern_base = pattern_generator_table_address_;
 | |
| 						int colour_base = colour_table_address_;
 | |
| 						if(screen_mode_ == ScreenMode::Graphics) {
 | |
| 							// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
 | |
| 							pattern_base &= 0x2000 | ((row_ & 0xc0) << 5);
 | |
| 							colour_base &= 0x2000 | ((row_ & 0xc0) << 5);
 | |
| 						}
 | |
| 						row_base += (row_ << 2)&~31;
 | |
| 
 | |
| 						// Pattern names are collected every fourth window starting from window 27.
 | |
| 						const int pattern_names_start = (access_pointer_ - 27 + 3) >> 2;
 | |
| 						const int pattern_names_end = (end - 27 + 3) >> 2;
 | |
| 						std::memcpy(&pattern_names_[pattern_names_start], &ram_[row_base + pattern_names_start], static_cast<size_t>(pattern_names_end - pattern_names_start));
 | |
| 
 | |
| 						// Colours are collected every fourth window starting from window 29.
 | |
| 						const int colours_start = (access_pointer_ - 29 + 3) >> 2;
 | |
| 						const int colours_end = (end - 29 + 3) >> 2;
 | |
| 						if(screen_mode_ != 1) {
 | |
| 							for(int column = colours_start; column < colours_end; ++column) {
 | |
| 								colour_buffer_[column] = ram_[colour_base + (pattern_names_[column] >> 3)];
 | |
| 							}
 | |
| 						} else {
 | |
| 							for(int column = colours_start; column < colours_end; ++column) {
 | |
| 								colour_buffer_[column] = ram_[colour_base + (pattern_names_[column] << 3) + (row_ & 7)];
 | |
| 							}
 | |
| 						}
 | |
| 
 | |
| 						// Patterns are collected ever fourth window starting from window 30.
 | |
| 						const int pattern_buffer_start = (access_pointer_ - 30 + 3) >> 2;
 | |
| 						const int pattern_buffer_end = (end - 30 + 3) >> 2;
 | |
| 
 | |
| 						// Multicolour mode uss a different function of row to pick bytes
 | |
| 						const int row = (screen_mode_ != 2) ? (row_ & 7) : ((row_ >> 2) & 7);
 | |
| 						for(int column = pattern_buffer_start; column < pattern_buffer_end; ++column) {
 | |
| 							pattern_buffer_[column] = ram_[pattern_base + (pattern_names_[column] << 3) + row];
 | |
| 						}
 | |
| 
 | |
| 						// Sprite slots occur in three quarters of ever fourth window starting from window 28.
 | |
| 						const int sprite_start = (access_pointer_ - 28 + 3) >> 2;
 | |
| 						const int sprite_end = (end - 28 + 3) >> 2;
 | |
| 						for(int column = sprite_start; column < sprite_end; ++column) {
 | |
| 							if(column&3) {
 | |
| 								test_sprite(7 + column - (column >> 2), sprite_row);
 | |
| 							}
 | |
| 						}
 | |
| 
 | |
| 						access_pointer_ = std::min(155, access_slot);
 | |
| 					}
 | |
| 
 | |
| 					// Two access windows: no collection.
 | |
| 					if(access_pointer_ < 157)
 | |
| 						access_pointer_ = std::min(157, access_slot);
 | |
| 
 | |
| 					// Fourteen access windows: collect initial sprite information.
 | |
| 					if(access_pointer_ >= 157 && access_pointer_ < 171) {
 | |
| 						int end = std::min(171, access_slot);
 | |
| 						get_sprite_contents(access_pointer_ - 157, end - access_pointer_, sprite_row);
 | |
| 						access_pointer_ = std::min(171, access_slot);
 | |
| 					}
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		// --------------------------
 | |
| 		// End video memory accesses.
 | |
| 		// --------------------------
 | |
| 
 | |
| 
 | |
| 
 | |
| 		// --------------------
 | |
| 		// Output video stream.
 | |
| 		// --------------------
 | |
| 		if(row_	< 192 && !blank_screen_) {
 | |
| 			// ----------------------
 | |
| 			// Output horizontal sync
 | |
| 			// ----------------------
 | |
| 			if(!output_column_ && column_ >= 26) {
 | |
| 				crt_->output_sync(13 * 4);
 | |
| 				crt_->output_default_colour_burst(13 * 4);
 | |
| 				output_column_ = 26;
 | |
| 			}
 | |
| 
 | |
| 			// -------------------
 | |
| 			// Output left border.
 | |
| 			// -------------------
 | |
| 			if(output_column_ >= 26) {
 | |
| 				int pixels_end = std::min(first_pixel_column_, column_);
 | |
| 				if(output_column_ < pixels_end) {
 | |
| 					output_border(pixels_end - output_column_);
 | |
| 					output_column_ = pixels_end;
 | |
| 
 | |
| 					// Grab a pointer for drawing pixels to, if the moment has arrived.
 | |
| 					if(pixels_end == first_pixel_column_) {
 | |
| 						pixel_base_ = pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_)));
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// --------------
 | |
| 			// Output pixels.
 | |
| 			// --------------
 | |
| 			if(output_column_ >= first_pixel_column_) {
 | |
| 				int pixels_end = std::min(first_right_border_column_, column_);
 | |
| 
 | |
| 				if(output_column_ < pixels_end) {
 | |
| 					switch(line_mode_) {
 | |
| 						default: break;
 | |
| 
 | |
| 						case LineMode::Text: {
 | |
| 							const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] };
 | |
| 
 | |
| 							const int shift = (output_column_ - first_pixel_column_) % 6;
 | |
| 							int byte_column = (output_column_ - first_pixel_column_) / 6;
 | |
| 							int pattern = reverse_table.map[pattern_buffer_[byte_column]] >> shift;
 | |
| 							int pixels_left = pixels_end - output_column_;
 | |
| 							int length = std::min(pixels_left, 6 - shift);
 | |
| 							while(true) {
 | |
| 								pixels_left -= length;
 | |
| 								for(int c = 0; c < length; ++c) {
 | |
| 									pixel_target_[c] = colours[pattern&0x01];
 | |
| 									pattern >>= 1;
 | |
| 								}
 | |
| 								pixel_target_ += length;
 | |
| 
 | |
| 								if(!pixels_left) break;
 | |
| 								length = std::min(6, pixels_left);
 | |
| 								byte_column++;
 | |
| 								pattern = reverse_table.map[pattern_buffer_[byte_column]];
 | |
| 							}
 | |
| 							output_column_ = pixels_end;
 | |
| 						} break;
 | |
| 
 | |
| 						case LineMode::Character: {
 | |
| 							// If this is the start of the visible area, seed sprite shifter positions.
 | |
| 							SpriteSet &sprite_set = sprite_sets_[active_sprite_set_ ^ 1];
 | |
| 							if(output_column_ == first_pixel_column_) {
 | |
| 								int c = sprite_set.active_sprite_slot;
 | |
| 								while(c--) {
 | |
| 									SpriteSet::ActiveSprite &sprite = sprite_set.active_sprites[c];
 | |
| 									sprite.shift_position = -sprite.info[1];
 | |
| 									if(sprite.info[3] & 0x80) {
 | |
| 										sprite.shift_position += 32;
 | |
| 										if(sprite.shift_position > 0 && !sprites_magnified_)
 | |
| 											sprite.shift_position *= 2;
 | |
| 									}
 | |
| 								}
 | |
| 							}
 | |
| 
 | |
| 							// Paint the background tiles.
 | |
| 							const int pixels_left = pixels_end - output_column_;
 | |
| 							if(screen_mode_ == ScreenMode::MultiColour) {
 | |
| 								int pixel_location = output_column_ - first_pixel_column_;
 | |
| 								for(int c = 0; c < pixels_left; ++c) {
 | |
| 									pixel_target_[c] = palette[
 | |
| 										(pattern_buffer_[(pixel_location + c) >> 3] >> (((pixel_location + c) & 4)^4)) & 15
 | |
| 									];
 | |
| 								}
 | |
| 								pixel_target_ += pixels_left;
 | |
| 							} else {
 | |
| 								const int shift = (output_column_ - first_pixel_column_) & 7;
 | |
| 								int byte_column = (output_column_ - first_pixel_column_) >> 3;
 | |
| 
 | |
| 								int length = std::min(pixels_left, 8 - shift);
 | |
| 
 | |
| 								int pattern = reverse_table.map[pattern_buffer_[byte_column]] >> shift;
 | |
| 								uint8_t colour = colour_buffer_[byte_column];
 | |
| 								uint32_t colours[2] = {
 | |
| 									palette[(colour & 15) ? (colour & 15) : background_colour_],
 | |
| 									palette[(colour >> 4) ? (colour >> 4) : background_colour_]
 | |
| 								};
 | |
| 
 | |
| 								int background_pixels_left = pixels_left;
 | |
| 								while(true) {
 | |
| 									background_pixels_left -= length;
 | |
| 									for(int c = 0; c < length; ++c) {
 | |
| 										pixel_target_[c] = colours[pattern&0x01];
 | |
| 										pattern >>= 1;
 | |
| 									}
 | |
| 									pixel_target_ += length;
 | |
| 
 | |
| 									if(!background_pixels_left) break;
 | |
| 									length = std::min(8, background_pixels_left);
 | |
| 									byte_column++;
 | |
| 
 | |
| 									pattern = reverse_table.map[pattern_buffer_[byte_column]];
 | |
| 									colour = colour_buffer_[byte_column];
 | |
| 									colours[0] = palette[(colour & 15) ? (colour & 15) : background_colour_];
 | |
| 									colours[1] = palette[(colour >> 4) ? (colour >> 4) : background_colour_];
 | |
| 								}
 | |
| 							}
 | |
| 
 | |
| 							// Paint sprites and check for collisions.
 | |
| 							if(sprite_set.active_sprite_slot) {
 | |
| 								int sprite_pixels_left = pixels_left;
 | |
| 								const int shift_advance = sprites_magnified_ ? 1 : 2;
 | |
| 
 | |
| 								const uint32_t sprite_colour_selection_masks[2] = {0x00000000, 0xffffffff};
 | |
| 								const int colour_masks[16] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
 | |
| 
 | |
| 								while(sprite_pixels_left--) {
 | |
| 									uint32_t sprite_colour = pixel_base_[output_column_ - first_pixel_column_];
 | |
| 									int sprite_mask = 0;
 | |
| 									int c = sprite_set.active_sprite_slot;
 | |
| 									while(c--) {
 | |
| 										SpriteSet::ActiveSprite &sprite = sprite_set.active_sprites[c];
 | |
| 
 | |
| 										if(sprite.shift_position < 0) {
 | |
| 											sprite.shift_position++;
 | |
| 											continue;
 | |
| 										} else if(sprite.shift_position < 32) {
 | |
| 											int mask = sprite.image[sprite.shift_position >> 4] << ((sprite.shift_position&15) >> 1);
 | |
| 											mask = (mask >> 7) & 1;
 | |
| 											status_ |= (mask & sprite_mask) << StatusSpriteCollisionShift;
 | |
| 											sprite_mask |= mask;
 | |
| 											sprite.shift_position += shift_advance;
 | |
| 
 | |
| 											mask &= colour_masks[sprite.info[3]&15];
 | |
| 											sprite_colour = (sprite_colour & sprite_colour_selection_masks[mask^1]) | (palette[sprite.info[3]&15] & sprite_colour_selection_masks[mask]);
 | |
| 										}
 | |
| 									}
 | |
| 
 | |
| 									pixel_base_[output_column_ - first_pixel_column_] = sprite_colour;
 | |
| 									output_column_++;
 | |
| 								}
 | |
| 							}
 | |
| 
 | |
| 							output_column_ = pixels_end;
 | |
| 						} break;
 | |
| 					}
 | |
| 
 | |
| 					if(output_column_ == first_right_border_column_) {
 | |
| 						crt_->output_data(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_) * 4, 4);
 | |
| 						pixel_target_ = nullptr;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// --------------------
 | |
| 			// Output right border.
 | |
| 			// --------------------
 | |
| 			if(output_column_ >= first_right_border_column_) {
 | |
| 				output_border(column_ - output_column_);
 | |
| 				output_column_ = column_;
 | |
| 			}
 | |
| 		} else if(row_ >= first_vsync_line_ && row_ < first_vsync_line_+3) {
 | |
| 			// Vertical sync.
 | |
| 			if(column_ == 342) {
 | |
| 				crt_->output_sync(342 * 4);
 | |
| 			}
 | |
| 		} else {
 | |
| 			// Blank.
 | |
| 			if(!output_column_ && column_ >= 26) {
 | |
| 				crt_->output_sync(13 * 4);
 | |
| 				crt_->output_default_colour_burst(13 * 4);
 | |
| 				output_column_ = 26;
 | |
| 			}
 | |
| 			if(output_column_ >= 26) {
 | |
| 				output_border(column_ - output_column_);
 | |
| 				output_column_ = column_;
 | |
| 			}
 | |
| 		}
 | |
| 		// -----------------
 | |
| 		// End video stream.
 | |
| 		// -----------------
 | |
| 
 | |
| 
 | |
| 
 | |
| 		// -----------------------------------
 | |
| 		// Prepare for next line, potentially.
 | |
| 		// -----------------------------------
 | |
| 		if(column_ == 342) {
 | |
| 			access_pointer_ = column_ = output_column_ = 0;
 | |
| 			row_ = (row_ + 1) % frame_lines_;
 | |
| 			if(row_ == 192) status_ |= StatusInterrupt;
 | |
| 
 | |
| 			screen_mode_ = next_screen_mode_;
 | |
| 			blank_screen_ = next_blank_screen_;
 | |
| 			switch(screen_mode_) {
 | |
| 				case ScreenMode::Text:
 | |
| 					line_mode_ = LineMode::Text;
 | |
| 					first_pixel_column_ = 69;
 | |
| 					first_right_border_column_ = 309;
 | |
| 				break;
 | |
| 				default:
 | |
| 					line_mode_ = LineMode::Character;
 | |
| 					first_pixel_column_ = 63;
 | |
| 					first_right_border_column_ = 319;
 | |
| 				break;
 | |
| 			}
 | |
| 			if(blank_screen_ || (row_ >= 192 && row_ != frame_lines_-1)) line_mode_ = LineMode::Refresh;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void TMS9918Base::output_border(int cycles) {
 | |
| 	pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(1));
 | |
| 	if(pixel_target_) *pixel_target_ = palette[background_colour_];
 | |
| 	crt_->output_level(static_cast<unsigned int>(cycles) * 4);
 | |
| }
 | |
| 
 | |
| void TMS9918::set_register(int address, uint8_t value) {
 | |
| 	// Writes to address 0 are writes to the video RAM. Store
 | |
| 	// the value and return.
 | |
| 	if(!(address & 1)) {
 | |
| 		write_phase_ = false;
 | |
| 
 | |
| 		// Enqueue the write to occur at the next available slot.
 | |
| 		read_ahead_buffer_ = value;
 | |
| 		queued_access_ = MemoryAccess::Write;
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Writes to address 1 are performed in pairs; if this is the
 | |
| 	// low byte of a value, store it and wait for the high byte.
 | |
| 	if(!write_phase_) {
 | |
| 		low_write_ = value;
 | |
| 		write_phase_ = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	write_phase_ = false;
 | |
| 	if(value & 0x80) {
 | |
| 		// This is a write to a register.
 | |
| 		switch(value & 7) {
 | |
| 			case 0:
 | |
| 				next_screen_mode_ = (next_screen_mode_ & 6) | ((low_write_ & 2) >> 1);
 | |
| 			break;
 | |
| 
 | |
| 			case 1:
 | |
| 				next_blank_screen_ = !(low_write_ & 0x40);
 | |
| 				generate_interrupts_ = !!(low_write_ & 0x20);
 | |
| 				next_screen_mode_ = (next_screen_mode_ & 1) | ((low_write_ & 0x18) >> 2);
 | |
| 				sprites_16x16_ = !!(low_write_ & 0x02);
 | |
| 				sprites_magnified_ = !!(low_write_ & 0x01);
 | |
| 
 | |
| 				sprite_height_ = 8;
 | |
| 				if(sprites_16x16_) sprite_height_ <<= 1;
 | |
| 				if(sprites_magnified_) sprite_height_ <<= 1;
 | |
| 			break;
 | |
| 
 | |
| 			case 2:
 | |
| 				pattern_name_address_ = static_cast<uint16_t>((low_write_ & 0xf) << 10);
 | |
| 			break;
 | |
| 
 | |
| 			case 3:
 | |
| 				colour_table_address_ = static_cast<uint16_t>(low_write_ << 6);
 | |
| 			break;
 | |
| 
 | |
| 			case 4:
 | |
| 				pattern_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
 | |
| 			break;
 | |
| 
 | |
| 			case 5:
 | |
| 				sprite_attribute_table_address_ = static_cast<uint16_t>((low_write_ & 0x7f) << 7);
 | |
| 			break;
 | |
| 
 | |
| 			case 6:
 | |
| 				sprite_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
 | |
| 			break;
 | |
| 
 | |
| 			case 7:
 | |
| 				text_colour_ = low_write_ >> 4;
 | |
| 				background_colour_ = low_write_ & 0xf;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		// This is a write to the RAM pointer.
 | |
| 		ram_pointer_ = static_cast<uint16_t>(low_write_ | (value << 8));
 | |
| 		if(!(value & 0x40)) {
 | |
| 			// Officially a 'read' set, so perform lookahead.
 | |
| 			queued_access_ = MemoryAccess::Read;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| uint8_t TMS9918::get_register(int address) {
 | |
| 	write_phase_ = false;
 | |
| 
 | |
| 	// Reads from address 0 read video RAM, via the read-ahead buffer.
 | |
| 	if(!(address & 1)) {
 | |
| 		// Enqueue the write to occur at the next available slot.
 | |
| 		uint8_t result = read_ahead_buffer_;
 | |
| 		queued_access_ = MemoryAccess::Read;
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	// Reads from address 1 get the status register.
 | |
| 	uint8_t result = status_;
 | |
| 	status_ &= ~(StatusInterrupt | StatusFifthSprite | StatusSpriteCollision);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
|  HalfCycles TMS9918::get_time_until_interrupt() {
 | |
| 	if(!generate_interrupts_) return HalfCycles(-1);
 | |
| 	if(get_interrupt_line()) return HalfCycles(0);
 | |
| 
 | |
| 	const int half_cycles_per_frame = frame_lines_ * 228 * 2;
 | |
| 	int half_cycles_remaining = (192 * 228 * 2 + half_cycles_per_frame - half_cycles_into_frame_.as_int()) % half_cycles_per_frame;
 | |
| 	return HalfCycles(half_cycles_remaining ? half_cycles_remaining : half_cycles_per_frame);
 | |
| }
 | |
| 
 | |
| bool TMS9918::get_interrupt_line() {
 | |
| 	return (status_ & StatusInterrupt) && generate_interrupts_;
 | |
| }
 |