mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-27 22:30:49 +00:00
241 lines
8.8 KiB
C++
241 lines
8.8 KiB
C++
//
|
|
// FilteringSpeaker.h
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 15/12/2017.
|
|
// Copyright 2017 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#ifndef FilteringSpeaker_h
|
|
#define FilteringSpeaker_h
|
|
|
|
#include "../Speaker.hpp"
|
|
#include "../../../SignalProcessing/Stepper.hpp"
|
|
#include "../../../SignalProcessing/FIRFilter.hpp"
|
|
#include "../../../ClockReceiver/ClockReceiver.hpp"
|
|
#include "../../../Concurrency/AsyncTaskQueue.hpp"
|
|
|
|
#include <mutex>
|
|
#include <cstring>
|
|
|
|
namespace Outputs {
|
|
namespace Speaker {
|
|
|
|
/*!
|
|
The low-pass speaker expects an Outputs::Speaker::SampleSource-derived
|
|
template class, and uses the instance supplied to its constructor as the
|
|
source of a high-frequency stream of audio which it filters down to a
|
|
lower-frequency output.
|
|
*/
|
|
template <typename T> class LowpassSpeaker: public Speaker {
|
|
public:
|
|
LowpassSpeaker(T &sample_source) : sample_source_(sample_source) {
|
|
sample_source.set_sample_volume_range(32767);
|
|
}
|
|
|
|
// Implemented as per Speaker.
|
|
float get_ideal_clock_rate_in_range(float minimum, float maximum) {
|
|
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
|
|
|
|
// return twice the cut off, if applicable
|
|
if( filter_parameters_.high_frequency_cutoff > 0.0f &&
|
|
filter_parameters_.input_cycles_per_second >= filter_parameters_.high_frequency_cutoff * 3.0f &&
|
|
filter_parameters_.input_cycles_per_second <= filter_parameters_.high_frequency_cutoff * 3.0f)
|
|
return filter_parameters_.high_frequency_cutoff * 3.0f;
|
|
|
|
// return exactly the input rate if possible
|
|
if( filter_parameters_.input_cycles_per_second >= minimum &&
|
|
filter_parameters_.input_cycles_per_second <= maximum)
|
|
return filter_parameters_.input_cycles_per_second;
|
|
|
|
// if the input rate is lower, return the minimum
|
|
if(filter_parameters_.input_cycles_per_second < minimum)
|
|
return minimum;
|
|
|
|
// otherwise, return the maximum
|
|
return maximum;
|
|
}
|
|
|
|
// Implemented as per Speaker.
|
|
void set_output_rate(float cycles_per_second, int buffer_size) {
|
|
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
|
|
filter_parameters_.output_cycles_per_second = cycles_per_second;
|
|
filter_parameters_.parameters_are_dirty = true;
|
|
output_buffer_.resize(static_cast<std::size_t>(buffer_size));
|
|
}
|
|
|
|
/*!
|
|
Sets the clock rate of the input audio.
|
|
*/
|
|
void set_input_rate(float cycles_per_second) {
|
|
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
|
|
filter_parameters_.input_cycles_per_second = cycles_per_second;
|
|
filter_parameters_.parameters_are_dirty = true;
|
|
filter_parameters_.input_rate_changed = true;
|
|
}
|
|
|
|
/*!
|
|
Allows a cut-off frequency to be specified for audio. Ordinarily this low-pass speaker
|
|
will determine a cut-off based on the output audio rate. A caller can manually select
|
|
an alternative cut-off. This allows machines with a low-pass filter on their audio output
|
|
path to be explicit about its effect, and get that simulation for free.
|
|
*/
|
|
void set_high_frequency_cutoff(float high_frequency) {
|
|
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
|
|
filter_parameters_.high_frequency_cutoff = high_frequency;
|
|
filter_parameters_.parameters_are_dirty = true;
|
|
}
|
|
|
|
/*!
|
|
Schedules an advancement by the number of cycles specified on the provided queue.
|
|
The speaker will advance by obtaining data from the sample source supplied
|
|
at construction, filtering it and passing it on to the speaker's delegate if there is one.
|
|
*/
|
|
void run_for(Concurrency::DeferringAsyncTaskQueue &queue, const Cycles cycles) {
|
|
queue.defer([this, cycles] {
|
|
run_for(cycles);
|
|
});
|
|
}
|
|
|
|
private:
|
|
/*!
|
|
Advances by the number of cycles specified, obtaining data from the sample source supplied
|
|
at construction, filtering it and passing it on to the speaker's delegate if there is one.
|
|
*/
|
|
void run_for(const Cycles cycles) {
|
|
if(!delegate_) return;
|
|
|
|
std::size_t cycles_remaining = static_cast<size_t>(cycles.as_int());
|
|
if(!cycles_remaining) return;
|
|
|
|
FilterParameters filter_parameters;
|
|
{
|
|
std::lock_guard<std::mutex> lock_guard(filter_parameters_mutex_);
|
|
filter_parameters = filter_parameters_;
|
|
filter_parameters_.parameters_are_dirty = false;
|
|
filter_parameters_.input_rate_changed = false;
|
|
}
|
|
if(filter_parameters.parameters_are_dirty) update_filter_coefficients(filter_parameters);
|
|
if(filter_parameters.input_rate_changed) {
|
|
delegate_->speaker_did_change_input_clock(this);
|
|
}
|
|
|
|
// If input and output rates exactly match, and no additional cut-off has been specified,
|
|
// just accumulate results and pass on.
|
|
if( filter_parameters.input_cycles_per_second == filter_parameters.output_cycles_per_second &&
|
|
filter_parameters.high_frequency_cutoff < 0.0) {
|
|
while(cycles_remaining) {
|
|
std::size_t cycles_to_read = std::min(output_buffer_.size() - output_buffer_pointer_, cycles_remaining);
|
|
|
|
sample_source_.get_samples(cycles_to_read, &output_buffer_[output_buffer_pointer_]);
|
|
output_buffer_pointer_ += cycles_to_read;
|
|
|
|
// announce to delegate if full
|
|
if(output_buffer_pointer_ == output_buffer_.size()) {
|
|
output_buffer_pointer_ = 0;
|
|
delegate_->speaker_did_complete_samples(this, output_buffer_);
|
|
}
|
|
|
|
cycles_remaining -= cycles_to_read;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// if the output rate is less than the input rate, or an additional cut-off has been specified, use the filter.
|
|
if( filter_parameters.input_cycles_per_second > filter_parameters.output_cycles_per_second ||
|
|
(filter_parameters.input_cycles_per_second == filter_parameters.output_cycles_per_second && filter_parameters.high_frequency_cutoff >= 0.0)) {
|
|
while(cycles_remaining) {
|
|
std::size_t cycles_to_read = std::min(cycles_remaining, input_buffer_.size() - input_buffer_depth_);
|
|
sample_source_.get_samples(cycles_to_read, &input_buffer_[input_buffer_depth_]);
|
|
cycles_remaining -= cycles_to_read;
|
|
input_buffer_depth_ += cycles_to_read;
|
|
|
|
if(input_buffer_depth_ == input_buffer_.size()) {
|
|
output_buffer_[output_buffer_pointer_] = filter_->apply(input_buffer_.data());
|
|
output_buffer_pointer_++;
|
|
|
|
// Announce to delegate if full.
|
|
if(output_buffer_pointer_ == output_buffer_.size()) {
|
|
output_buffer_pointer_ = 0;
|
|
delegate_->speaker_did_complete_samples(this, output_buffer_);
|
|
}
|
|
|
|
// If the next loop around is going to reuse some of the samples just collected, use a memmove to
|
|
// preserve them in the correct locations (TODO: use a longer buffer to fix that) and don't skip
|
|
// anything. Otherwise skip as required to get to the next sample batch and don't expect to reuse.
|
|
uint64_t steps = stepper_->step();
|
|
if(steps < input_buffer_.size()) {
|
|
int16_t *input_buffer = input_buffer_.data();
|
|
std::memmove( input_buffer,
|
|
&input_buffer[steps],
|
|
sizeof(int16_t) * (input_buffer_.size() - steps));
|
|
input_buffer_depth_ -= steps;
|
|
} else {
|
|
if(steps > input_buffer_.size())
|
|
sample_source_.skip_samples(steps - input_buffer_.size());
|
|
input_buffer_depth_ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// TODO: input rate is less than output rate
|
|
}
|
|
|
|
T &sample_source_;
|
|
|
|
std::size_t output_buffer_pointer_ = 0;
|
|
std::size_t input_buffer_depth_ = 0;
|
|
std::vector<int16_t> input_buffer_;
|
|
std::vector<int16_t> output_buffer_;
|
|
|
|
std::unique_ptr<SignalProcessing::Stepper> stepper_;
|
|
std::unique_ptr<SignalProcessing::FIRFilter> filter_;
|
|
|
|
std::mutex filter_parameters_mutex_;
|
|
struct FilterParameters {
|
|
float input_cycles_per_second = 0.0f;
|
|
float output_cycles_per_second = 0.0f;
|
|
float high_frequency_cutoff = -1.0;
|
|
|
|
bool parameters_are_dirty = true;
|
|
bool input_rate_changed = false;
|
|
} filter_parameters_;
|
|
|
|
void update_filter_coefficients(const FilterParameters &filter_parameters) {
|
|
float high_pass_frequency = filter_parameters.output_cycles_per_second / 2.0f;
|
|
if(filter_parameters.high_frequency_cutoff > 0.0) {
|
|
high_pass_frequency = std::min(filter_parameters.high_frequency_cutoff, high_pass_frequency);
|
|
}
|
|
|
|
// Make a guess at a good number of taps.
|
|
std::size_t number_of_taps = static_cast<std::size_t>(
|
|
ceilf((filter_parameters.input_cycles_per_second + high_pass_frequency) / high_pass_frequency)
|
|
);
|
|
number_of_taps = (number_of_taps * 2) | 1;
|
|
|
|
output_buffer_pointer_ = 0;
|
|
stepper_.reset(new SignalProcessing::Stepper(
|
|
static_cast<uint64_t>(filter_parameters.input_cycles_per_second),
|
|
static_cast<uint64_t>(filter_parameters.output_cycles_per_second)));
|
|
|
|
filter_.reset(new SignalProcessing::FIRFilter(
|
|
static_cast<unsigned int>(number_of_taps),
|
|
filter_parameters.input_cycles_per_second,
|
|
0.0,
|
|
high_pass_frequency,
|
|
SignalProcessing::FIRFilter::DefaultAttenuation));
|
|
|
|
input_buffer_.resize(static_cast<std::size_t>(number_of_taps));
|
|
input_buffer_depth_ = 0;
|
|
}
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
#endif /* FilteringSpeaker_h */
|