1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-27 22:30:49 +00:00
CLK/Storage/TimedEventLoop.cpp
2017-12-20 21:03:24 -05:00

106 lines
3.5 KiB
C++

//
// TimedEventLoop.cpp
// Clock Signal
//
// Created by Thomas Harte on 29/07/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#include "TimedEventLoop.hpp"
#include "../NumberTheory/Factors.hpp"
#include <algorithm>
#include <cassert>
using namespace Storage;
TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) :
input_clock_rate_(input_clock_rate) {}
void TimedEventLoop::run_for(const Cycles cycles) {
int remaining_cycles = cycles.as_int();
#ifndef NDEBUG
int cycles_advanced = 0;
#endif
while(cycles_until_event_ <= remaining_cycles) {
#ifndef NDEBUG
cycles_advanced += cycles_until_event_;
#endif
advance(cycles_until_event_);
remaining_cycles -= cycles_until_event_;
cycles_until_event_ = 0;
process_next_event();
}
if(remaining_cycles) {
cycles_until_event_ -= remaining_cycles;
#ifndef NDEBUG
cycles_advanced += remaining_cycles;
#endif
advance(remaining_cycles);
}
assert(cycles_advanced == cycles.as_int());
assert(cycles_until_event_ > 0);
}
unsigned int TimedEventLoop::get_cycles_until_next_event() {
return static_cast<unsigned int>(std::max(cycles_until_event_, 0));
}
unsigned int TimedEventLoop::get_input_clock_rate() {
return input_clock_rate_;
}
void TimedEventLoop::reset_timer() {
subcycles_until_event_.set_zero();
cycles_until_event_ = 0;
}
void TimedEventLoop::jump_to_next_event() {
reset_timer();
process_next_event();
}
void TimedEventLoop::set_next_event_time_interval(Time interval) {
// Calculate [interval]*[input clock rate] + [subcycles until this event].
int64_t denominator = static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.clock_rate);
int64_t numerator =
static_cast<int64_t>(subcycles_until_event_.clock_rate) * static_cast<int64_t>(input_clock_rate_) * static_cast<int64_t>(interval.length) +
static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.length);
// Simplify if necessary: try just simplifying the interval and recalculating; if that doesn't
// work then try simplifying the whole thing.
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<unsigned int>::max()) {
interval.simplify();
denominator = static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.clock_rate);
numerator =
static_cast<int64_t>(subcycles_until_event_.clock_rate) * static_cast<int64_t>(input_clock_rate_) * static_cast<int64_t>(interval.length) +
static_cast<int64_t>(interval.clock_rate) * static_cast<int64_t>(subcycles_until_event_.length);
}
if(numerator < 0 || denominator < 0 || denominator > std::numeric_limits<unsigned int>::max()) {
int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator);
denominator /= common_divisor;
numerator /= common_divisor;
}
// TODO: if that doesn't work then reduce precision.
// So this event will fire in the integral number of cycles from now, putting us at the remainder
// number of subcycles
assert(cycles_until_event_ == 0);
cycles_until_event_ += static_cast<int>(numerator / denominator);
assert(cycles_until_event_ >= 0);
subcycles_until_event_.length = static_cast<unsigned int>(numerator % denominator);
subcycles_until_event_.clock_rate = static_cast<unsigned int>(denominator);
subcycles_until_event_.simplify();
}
Time TimedEventLoop::get_time_into_next_event() {
// TODO: calculate, presumably as [length of interval] - ([cycles left] + [subcycles left])
Time zero;
return zero;
}