1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-04 15:05:36 +00:00
CLK/Storage/Tape/Formats/CAS.cpp

169 lines
5.2 KiB
C++

//
// CAS.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/11/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "CAS.hpp"
#include <cassert>
#include <cstring>
using namespace Storage::Tape;
namespace {
const uint8_t header_signature[8] = {0x1f, 0xa6, 0xde, 0xba, 0xcc, 0x13, 0x7d, 0x74};
}
CAS::CAS(const std::string &file_name) {
Storage::FileHolder file(file_name);
uint8_t lookahead[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Entirely fill the lookahead and verify that its start matches the header signature.
get_next(file, lookahead, 10);
if(std::memcmp(lookahead, header_signature, sizeof(header_signature))) throw ErrorNotCAS;
while(!file.eof()) {
// Just found a header, so flush the lookahead.
get_next(file, lookahead, 8);
// Create a new chunk
chunks_.emplace_back();
Chunk &chunk = chunks_.back();
// Decide whether to award a long header and/or a gap.
bool bytes_are_equal = true;
for(std::size_t index = 0; index < sizeof(lookahead); index++)
bytes_are_equal &= (lookahead[index] == lookahead[0]);
chunk.long_header = bytes_are_equal && ((lookahead[0] == 0xd3) || (lookahead[0] == 0xd0) || (lookahead[0] == 0xea));
chunk.has_gap = chunk.long_header && (chunks_.size() > 1);
// Keep going until another header arrives or the file ends. Headers require the magic byte sequence,
// and also must be eight-byte aligned within the file.
while( !file.eof() &&
(std::memcmp(lookahead, header_signature, sizeof(header_signature)) || ((file.tell()-10)&7))) {
chunk.data.push_back(lookahead[0]);
get_next(file, lookahead, 1);
}
// If the file ended, flush the lookahead. The final thing in it will be a 0xff from the read that
// triggered the eof, so don't include that.
if(file.eof()) {
for(std::size_t index = 0; index < sizeof(lookahead) - 1; index++)
chunk.data.push_back(lookahead[index]);
}
}
}
/*!
Treating @c buffer as a sliding lookahead, shifts it @c quantity elements to the left and
populates the new empty area to the right from @c file.
*/
void CAS::get_next(Storage::FileHolder &file, uint8_t (&buffer)[10], std::size_t quantity) {
assert(quantity <= sizeof(buffer));
if(quantity < sizeof(buffer))
std::memmove(buffer, &buffer[quantity], sizeof(buffer) - quantity);
while(quantity--) {
buffer[sizeof(buffer) - 1 - quantity] = file.get8();
}
}
bool CAS::is_at_end() {
return phase_ == Phase::EndOfFile;
}
void CAS::virtual_reset() {
phase_ = Phase::Header;
chunk_pointer_ = 0;
distance_into_phase_ = 0;
distance_into_bit_ = 0;
}
Tape::Pulse CAS::virtual_get_next_pulse() {
Pulse pulse;
pulse.length.clock_rate = 9600;
// Clock rate is four times the baud rate (of 2400), because the quickest thing that might need
// to be communicated is a '1', which is two cycles at the baud rate, i.e. four events:
// high, low, high, low.
// If this is a gap, then that terminates a file. If this is already the end
// of the file then perpetual gaps await.
if(phase_ == Phase::Gap || phase_ == Phase::EndOfFile) {
pulse.length.length = pulse.length.clock_rate;
pulse.type = Pulse::Type::Zero;
if(phase_ == Phase::Gap) {
phase_ = Phase::Header;
distance_into_phase_ = 0;
}
return pulse;
}
// Determine which bit is now forthcoming.
int bit = 1;
switch(phase_) {
default: break;
case Phase::Header: {
// In the header, all bits are 1s, so let the default value stand. Just check whether the
// header is ended and, if so, move on to bytes.
distance_into_bit_++;
if(distance_into_bit_ == 2) {
distance_into_phase_++;
distance_into_bit_ = 0;
// This code always produces a 2400 baud signal; so use the appropriate Red Book-supplied
// constants to check whether the header has come to an end.
if(distance_into_phase_ == (chunks_[chunk_pointer_].long_header ? 31744 : 7936)) {
phase_ = Phase::Bytes;
distance_into_phase_ = 0;
distance_into_bit_ = 0;
}
}
} break;
case Phase::Bytes: {
// Provide bits with a single '0' start bit and two '1' stop bits.
uint8_t byte_value = chunks_[chunk_pointer_].data[distance_into_phase_ / 11];
int bit_offset = distance_into_phase_ % 11;
switch(bit_offset) {
case 0: bit = 0; break;
default: bit = (byte_value >> (bit_offset - 1)) & 1; break;
case 9:
case 10: bit = 1; break;
}
// If bit is finished, and if all bytes in chunk have been posted then:
// - if this is the final chunk then note end of file.
// - otherwise, roll onto the next header or gap, depending on whether the next chunk has a gap.
distance_into_bit_++;
if(distance_into_bit_ == (bit ? 4 : 2)) {
distance_into_bit_ = 0;
distance_into_phase_++;
if(distance_into_phase_ == chunks_[chunk_pointer_].data.size() * 11) {
distance_into_phase_ = 0;
chunk_pointer_++;
if(chunk_pointer_ == chunks_.size()) {
phase_ = Phase::EndOfFile;
} else {
phase_ = chunks_[chunk_pointer_].has_gap ? Phase::Gap : Phase::Header;
}
}
}
} break;
}
// A '1' is encoded with twice the frequency of a '0'.
pulse.length.length = static_cast<unsigned int>(2 - bit);
pulse.type = (distance_into_bit_ & 1) ? Pulse::Type::High : Pulse::Type::Low;
return pulse;
}