mirror of
				https://github.com/TomHarte/CLK.git
				synced 2025-10-31 05:16:08 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			498 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			498 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| //  Implementation.hpp
 | |
| //  Clock Signal
 | |
| //
 | |
| //  Created by Thomas Harte on 04/09/2017.
 | |
| //  Copyright 2017 Thomas Harte. All rights reserved.
 | |
| //
 | |
| 
 | |
| #include "../../../Outputs/Log.hpp"
 | |
| 
 | |
| // As-yet unimplemented (incomplete list):
 | |
| //
 | |
| //	PB6 count-down mode for timer 2.
 | |
| 
 | |
| namespace MOS {
 | |
| namespace MOS6522 {
 | |
| 
 | |
| template <typename T> void MOS6522<T>::access(int address) {
 | |
| 	switch(address) {
 | |
| 		case 0x0:
 | |
| 			// In both handshake and pulse modes, CB2 goes low on any read or write of Port B.
 | |
| 			if(handshake_modes_[1] != HandshakeMode::None) {
 | |
| 				set_control_line_output(Port::B, Line::Two, LineState::Off);
 | |
| 			}
 | |
| 		break;
 | |
| 
 | |
| 		case 0xf:
 | |
| 		case 0x1:
 | |
| 			// In both handshake and pulse modes, CA2 goes low on any read or write of Port A.
 | |
| 			if(handshake_modes_[0] != HandshakeMode::None) {
 | |
| 				set_control_line_output(Port::A, Line::Two, LineState::Off);
 | |
| 			}
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::write(int address, uint8_t value) {
 | |
| 	address &= 0xf;
 | |
| 	access(address);
 | |
| 	switch(address) {
 | |
| 		case 0x0:	// Write Port B. ('ORB')
 | |
| 			// Store locally and communicate outwards.
 | |
| 			registers_.output[1] = value;
 | |
| 
 | |
| 			bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 			evaluate_port_b_output();
 | |
| 
 | |
| 			registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | ((registers_.peripheral_control&0x20) ? 0 : InterruptFlag::CB2ActiveEdge));
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 		case 0xf:
 | |
| 		case 0x1:	// Write Port A. ('ORA')
 | |
| 			registers_.output[0] = value;
 | |
| 
 | |
| 			bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 			bus_handler_.set_port_output(Port::A, value, registers_.data_direction[0]);
 | |
| 
 | |
| 			if(handshake_modes_[1] != HandshakeMode::None) {
 | |
| 				set_control_line_output(Port::A, Line::Two, LineState::Off);
 | |
| 			}
 | |
| 
 | |
| 			registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | ((registers_.peripheral_control&0x02) ? 0 : InterruptFlag::CB2ActiveEdge));
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 
 | |
| 		case 0x2:	// Port B direction ('DDRB').
 | |
| 			registers_.data_direction[1] = value;
 | |
| 		break;
 | |
| 		case 0x3:	// Port A direction ('DDRA').
 | |
| 			registers_.data_direction[0] = value;
 | |
| 		break;
 | |
| 
 | |
| 		// Timer 1
 | |
| 		case 0x6:	case 0x4:	// ('T1L-L' and 'T1C-L')
 | |
| 			registers_.timer_latch[0] = (registers_.timer_latch[0]&0xff00) | value;
 | |
| 		break;
 | |
| 		case 0x7:	// Timer 1 latch, high ('T1L-H').
 | |
| 			registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8);
 | |
| 		break;
 | |
| 		case 0x5:	// Timer 1 counter, high ('T1C-H').
 | |
| 			// Fill latch.
 | |
| 			registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | uint16_t(value << 8);
 | |
| 
 | |
| 			// Restart timer.
 | |
| 			registers_.next_timer[0] = registers_.timer_latch[0];
 | |
| 			timer_is_running_[0] = true;
 | |
| 
 | |
| 			// If PB7 output mode is active, set it low.
 | |
| 			if(timer1_is_controlling_pb7()) {
 | |
| 				registers_.timer_port_b_output &= 0x7f;
 | |
| 				evaluate_port_b_output();
 | |
| 			}
 | |
| 
 | |
| 			// Clear existing interrupt flag.
 | |
| 			registers_.interrupt_flags &= ~InterruptFlag::Timer1;
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 
 | |
| 		// Timer 2
 | |
| 		case 0x8:	// ('T2C-L')
 | |
| 			registers_.timer_latch[1] = value;
 | |
| 		break;
 | |
| 		case 0x9:	// ('T2C-H')
 | |
| 			registers_.interrupt_flags &= ~InterruptFlag::Timer2;
 | |
| 			registers_.next_timer[1] = registers_.timer_latch[1] | uint16_t(value << 8);
 | |
| 			timer_is_running_[1] = true;
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 
 | |
| 		// Shift
 | |
| 		case 0xa:	// ('SR')
 | |
| 			registers_.shift = value;
 | |
| 			shift_bits_remaining_ = 8;
 | |
| 			registers_.interrupt_flags &= ~InterruptFlag::ShiftRegister;
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 
 | |
| 		// Control
 | |
| 		case 0xb:	// Auxiliary control ('ACR').
 | |
| 			registers_.auxiliary_control = value;
 | |
| 			evaluate_cb2_output();
 | |
| 
 | |
| 			// This is a bit of a guess: reset the timer-based PB7 output to its default high level
 | |
| 			// any timer that timer-linked PB7 output is disabled.
 | |
| 			if(!timer1_is_controlling_pb7()) {
 | |
| 				registers_.timer_port_b_output |= 0x80;
 | |
| 			}
 | |
| 			evaluate_port_b_output();
 | |
| 		break;
 | |
| 		case 0xc: {	// Peripheral control ('PCR').
 | |
| //			const auto old_peripheral_control = registers_.peripheral_control;
 | |
| 			registers_.peripheral_control = value;
 | |
| 
 | |
| 			int shift = 0;
 | |
| 			for(int port = 0; port < 2; ++port) {
 | |
| 				handshake_modes_[port] = HandshakeMode::None;
 | |
| 				switch((value >> shift) & 0x0e) {
 | |
| 					default: break;
 | |
| 
 | |
| 					case 0x00:	// Negative interrupt input; set Cx2 interrupt on negative Cx2 transition, clear on access to Port x register.
 | |
| 					case 0x02:	// Independent negative interrupt input; set Cx2 interrupt on negative transition, don't clear automatically.
 | |
| 					case 0x04:	// Positive interrupt input; set Cx2 interrupt on positive Cx2 transition, clear on access to Port x register.
 | |
| 					case 0x06:	// Independent positive interrupt input; set Cx2 interrupt on positive transition, don't clear automatically.
 | |
| 						set_control_line_output(Port(port), Line::Two, LineState::Input);
 | |
| 					break;
 | |
| 
 | |
| 					case 0x08:	// Handshake: set Cx2 to low on any read or write of Port x; set to high on an active transition of Cx1.
 | |
| 						handshake_modes_[port] = HandshakeMode::Handshake;
 | |
| 						set_control_line_output(Port(port), Line::Two, LineState::Off);	// At a guess.
 | |
| 					break;
 | |
| 
 | |
| 					case 0x0a:	// Pulse output: Cx2 is low for one cycle following a read or write of Port x.
 | |
| 						handshake_modes_[port] = HandshakeMode::Pulse;
 | |
| 						set_control_line_output(Port(port), Line::Two, LineState::On);
 | |
| 					break;
 | |
| 
 | |
| 					case 0x0c:	// Manual output: Cx2 low.
 | |
| 						set_control_line_output(Port(port), Line::Two, LineState::Off);
 | |
| 					break;
 | |
| 
 | |
| 					case 0x0e:	// Manual output: Cx2 high.
 | |
| 						set_control_line_output(Port(port), Line::Two, LineState::On);
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				shift += 4;
 | |
| 			}
 | |
| 		} break;
 | |
| 
 | |
| 		// Interrupt control
 | |
| 		case 0xd:	// Interrupt flag regiser ('IFR').
 | |
| 			registers_.interrupt_flags &= ~value;
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 		case 0xe:	// Interrupt enable register ('IER').
 | |
| 			if(value&0x80)
 | |
| 				registers_.interrupt_enable |= value;
 | |
| 			else
 | |
| 				registers_.interrupt_enable &= ~value;
 | |
| 			reevaluate_interrupts();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> uint8_t MOS6522<T>::read(int address) {
 | |
| 	address &= 0xf;
 | |
| 	access(address);
 | |
| 	switch(address) {
 | |
| 		case 0x0:	// Read Port B ('IRB').
 | |
| 			registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge);
 | |
| 			reevaluate_interrupts();
 | |
| 		return get_port_input(Port::B, registers_.data_direction[1], registers_.output[1], registers_.auxiliary_control & 0x80);
 | |
| 		case 0xf:
 | |
| 		case 0x1:	// Read Port A ('IRA').
 | |
| 			registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge);
 | |
| 			reevaluate_interrupts();
 | |
| 		return get_port_input(Port::A, registers_.data_direction[0], registers_.output[0], 0);
 | |
| 
 | |
| 		case 0x2:	return registers_.data_direction[1];	// Port B direction ('DDRB').
 | |
| 		case 0x3:	return registers_.data_direction[0];	// Port A direction ('DDRA').
 | |
| 
 | |
| 		// Timer 1
 | |
| 		case 0x4:	// Timer 1 low-order latches ('T1L-L').
 | |
| 			registers_.interrupt_flags &= ~InterruptFlag::Timer1;
 | |
| 			reevaluate_interrupts();
 | |
| 		return registers_.timer[0] & 0x00ff;
 | |
| 		case 0x5:	return registers_.timer[0] >> 8;			// Timer 1 high-order counter ('T1C-H')
 | |
| 		case 0x6:	return registers_.timer_latch[0] & 0x00ff;	// Timer 1 low-order latches ('T1L-L').
 | |
| 		case 0x7:	return registers_.timer_latch[0] >> 8;		// Timer 1 high-order latches ('T1L-H').
 | |
| 
 | |
| 		// Timer 2
 | |
| 		case 0x8:	// Timer 2 low-order counter ('T2C-L').
 | |
| 			registers_.interrupt_flags &= ~InterruptFlag::Timer2;
 | |
| 			reevaluate_interrupts();
 | |
| 		return registers_.timer[1] & 0x00ff;
 | |
| 		case 0x9:	return registers_.timer[1] >> 8;	// Timer 2 high-order counter ('T2C-H').
 | |
| 
 | |
| 		case 0xa:	// Shift register ('SR').
 | |
| 			shift_bits_remaining_ = 8;
 | |
| 			registers_.interrupt_flags &= ~InterruptFlag::ShiftRegister;
 | |
| 			reevaluate_interrupts();
 | |
| 		return registers_.shift;
 | |
| 
 | |
| 		case 0xb:	return registers_.auxiliary_control;	// Auxiliary control ('ACR').
 | |
| 		case 0xc:	return registers_.peripheral_control;	// Peripheral control ('PCR').
 | |
| 
 | |
| 		case 0xd:	return registers_.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00);	// Interrupt flag register ('IFR').
 | |
| 		case 0xe:	return registers_.interrupt_enable | 0x80;									// Interrupt enable register ('IER').
 | |
| 	}
 | |
| 
 | |
| 	return 0xff;
 | |
| }
 | |
| 
 | |
| template <typename T> uint8_t MOS6522<T>::get_port_input(Port port, uint8_t output_mask, uint8_t output, uint8_t timer_mask) {
 | |
| 	bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 	const uint8_t input = bus_handler_.get_port_input(port);
 | |
| 	output = (output & ~timer_mask) | (registers_.timer_port_b_output & timer_mask);
 | |
| 	return (input & ~output_mask) | (output & output_mask);
 | |
| }
 | |
| 
 | |
| template <typename T> T &MOS6522<T>::bus_handler() {
 | |
| 	return bus_handler_;
 | |
| }
 | |
| 
 | |
| // Delegate and communications
 | |
| template <typename T> void MOS6522<T>::reevaluate_interrupts() {
 | |
| 	bool new_interrupt_status = get_interrupt_line();
 | |
| 	if(new_interrupt_status != last_posted_interrupt_status_) {
 | |
| 		last_posted_interrupt_status_ = new_interrupt_status;
 | |
| 
 | |
| 		bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 		bus_handler_.set_interrupt_status(new_interrupt_status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::set_control_line_input(Port port, Line line, bool value) {
 | |
| 	switch(line) {
 | |
| 		case Line::One:
 | |
| 			if(value != control_inputs_[port].lines[line]) {
 | |
| 				// In handshake mode, any transition on C[A/B]1 sets output high on C[A/B]2.
 | |
| 				if(handshake_modes_[port] == HandshakeMode::Handshake) {
 | |
| 					set_control_line_output(port, Line::Two, LineState::On);
 | |
| 				}
 | |
| 
 | |
| 				// Set the proper transition interrupt bit if enabled.
 | |
| 				if(value == !!(registers_.peripheral_control & (port ? 0x10 : 0x01))) {
 | |
| 					registers_.interrupt_flags |= port ? InterruptFlag::CB1ActiveEdge : InterruptFlag::CA1ActiveEdge;
 | |
| 					reevaluate_interrupts();
 | |
| 				}
 | |
| 
 | |
| 				// If this is a transition on CB1, consider updating the shift register.
 | |
| 				// TODO: and at least one full clock since the shift register was written?
 | |
| 				if(port == Port::B) {
 | |
| 					switch(shift_mode()) {
 | |
| 						default: 													break;
 | |
| 						case ShiftMode::InUnderCB1:		if(value)	shift_in();		break;	// Shifts in are captured on a low-to-high transition.
 | |
| 						case ShiftMode::OutUnderCB1:	if(!value)	shift_out();	break;	// Shifts out are updated on a high-to-low transition.
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			control_inputs_[port].lines[line] = value;
 | |
| 		break;
 | |
| 
 | |
| 		case Line::Two:
 | |
| 			if(	value != control_inputs_[port].lines[line] &&						// i.e. value has changed ...
 | |
| 				!(registers_.peripheral_control & (port ? 0x80 : 0x08)) &&			// ... and line is input ...
 | |
| 				value == !!(registers_.peripheral_control & (port ? 0x40 : 0x04))	// ... and it's either high or low, as required
 | |
| 			) {
 | |
| 				registers_.interrupt_flags |= port ? InterruptFlag::CB2ActiveEdge : InterruptFlag::CA2ActiveEdge;
 | |
| 				reevaluate_interrupts();
 | |
| 			}
 | |
| 			control_inputs_[port].lines[line] = value;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::do_phase2() {
 | |
| 	++ time_since_bus_handler_call_;
 | |
| 
 | |
| 	registers_.last_timer[0] = registers_.timer[0];
 | |
| 	registers_.last_timer[1] = registers_.timer[1];
 | |
| 
 | |
| 	if(registers_.timer_needs_reload) {
 | |
| 		registers_.timer_needs_reload = false;
 | |
| 		registers_.timer[0] = registers_.timer_latch[0];
 | |
| 	} else {
 | |
| 		-- registers_.timer[0];
 | |
| 	}
 | |
| 
 | |
| 	// Count down timer 2 if it is in timed interrupt mode (i.e. auxiliary control bit 5 is clear).
 | |
| 	registers_.timer[1] -= timer2_clock_decrement();
 | |
| 
 | |
| 	// TODO: can eliminate conditional branches here.
 | |
| 	if(registers_.next_timer[0] >= 0) {
 | |
| 		registers_.timer[0] = uint16_t(registers_.next_timer[0]);
 | |
| 		registers_.next_timer[0] = -1;
 | |
| 	}
 | |
| 	if(registers_.next_timer[1] >= 0) {
 | |
| 		registers_.timer[1] = uint16_t(registers_.next_timer[1]);
 | |
| 		registers_.next_timer[1] = -1;
 | |
| 	}
 | |
| 
 | |
| 	// In pulse modes, CA2 and CB2 go high again on the next clock edge.
 | |
| 	if(handshake_modes_[1] == HandshakeMode::Pulse) {
 | |
| 		set_control_line_output(Port::B, Line::Two, LineState::On);
 | |
| 	}
 | |
| 	if(handshake_modes_[0] == HandshakeMode::Pulse) {
 | |
| 		set_control_line_output(Port::A, Line::Two, LineState::On);
 | |
| 	}
 | |
| 
 | |
| 	// If the shift register is shifting according to the input clock, do a shift.
 | |
| 	switch(shift_mode()) {
 | |
| 		default: 											break;
 | |
| 		case ShiftMode::InUnderPhase2:		shift_in();		break;
 | |
| 		case ShiftMode::OutUnderPhase2:		shift_out();	break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::do_phase1() {
 | |
| 	++ time_since_bus_handler_call_;
 | |
| 
 | |
| 	// IRQ is raised on the half cycle after overflow
 | |
| 	if((registers_.timer[1] == 0xffff) && !registers_.last_timer[1] && timer_is_running_[1]) {
 | |
| 		timer_is_running_[1] = false;
 | |
| 
 | |
| 		// If the shift register is shifting according to this timer, do a shift.
 | |
| 		// TODO: "shift register is driven by only the low order 8 bits of timer 2"?
 | |
| 		switch(shift_mode()) {
 | |
| 			default: 												break;
 | |
| 			case ShiftMode::InUnderT2:				shift_in();		break;
 | |
| 			case ShiftMode::OutUnderT2FreeRunning: 	shift_out();	break;
 | |
| 			case ShiftMode::OutUnderT2:				shift_out();	break;	// TODO: present a clock on CB1.
 | |
| 		}
 | |
| 
 | |
| 		registers_.interrupt_flags |= InterruptFlag::Timer2;
 | |
| 		reevaluate_interrupts();
 | |
| 	}
 | |
| 
 | |
| 	if((registers_.timer[0] == 0xffff) && !registers_.last_timer[0] && timer_is_running_[0]) {
 | |
| 		registers_.interrupt_flags |= InterruptFlag::Timer1;
 | |
| 		reevaluate_interrupts();
 | |
| 
 | |
| 		// Determine whether to reload.
 | |
| 		if(timer1_is_continuous())
 | |
| 			registers_.timer_needs_reload = true;
 | |
| 		else
 | |
| 			timer_is_running_[0] = false;
 | |
| 
 | |
| 		// Determine whether to toggle PB7.
 | |
| 		if(timer1_is_controlling_pb7()) {
 | |
| 			registers_.timer_port_b_output ^= 0x80;
 | |
| 			bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 			evaluate_port_b_output();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::evaluate_port_b_output() {
 | |
| 	// Apply current timer-linked PB7 output if any atop the stated output.
 | |
| 	const uint8_t timer_control_bit = registers_.auxiliary_control & 0x80;
 | |
| 	bus_handler_.set_port_output(
 | |
| 		Port::B,
 | |
| 		(registers_.output[1] & (0xff ^ timer_control_bit)) | timer_control_bit,
 | |
| 		registers_.data_direction[1] | timer_control_bit);
 | |
| }
 | |
| 
 | |
| /*! Runs for a specified number of half cycles. */
 | |
| template <typename T> void MOS6522<T>::run_for(const HalfCycles half_cycles) {
 | |
| 	auto number_of_half_cycles = half_cycles.as_integral();
 | |
| 	if(!number_of_half_cycles) return;
 | |
| 
 | |
| 	if(is_phase2_) {
 | |
| 		do_phase2();
 | |
| 		number_of_half_cycles--;
 | |
| 	}
 | |
| 
 | |
| 	while(number_of_half_cycles >= 2) {
 | |
| 		do_phase1();
 | |
| 		do_phase2();
 | |
| 		number_of_half_cycles -= 2;
 | |
| 	}
 | |
| 
 | |
| 	if(number_of_half_cycles) {
 | |
| 		do_phase1();
 | |
| 		is_phase2_ = true;
 | |
| 	} else {
 | |
| 		is_phase2_ = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::flush() {
 | |
| 	bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 	bus_handler_.flush();
 | |
| }
 | |
| 
 | |
| /*! Runs for a specified number of cycles. */
 | |
| template <typename T> void MOS6522<T>::run_for(const Cycles cycles) {
 | |
| 	auto number_of_cycles = cycles.as_integral();
 | |
| 	while(number_of_cycles--) {
 | |
| 		do_phase1();
 | |
| 		do_phase2();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*! @returns @c true if the IRQ line is currently active; @c false otherwise. */
 | |
| template <typename T> bool MOS6522<T>::get_interrupt_line() const {
 | |
| 	uint8_t interrupt_status = registers_.interrupt_flags & registers_.interrupt_enable & 0x7f;
 | |
| 	return interrupt_status;
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::evaluate_cb2_output() {
 | |
| 	// CB2 is a special case, being both the line the shift register can output to,
 | |
| 	// and one that can be used as an input or handshaking output according to the
 | |
| 	// peripheral control register.
 | |
| 
 | |
| 	// My guess: other CB2 functions work only if the shift register is disabled (?).
 | |
| 	if(shift_mode() != ShiftMode::Disabled) {
 | |
| 		// Shift register is enabled, one way or the other; but announce only output.
 | |
| 		if(is_shifting_out()) {
 | |
| 			// Output mode; set the level according to the current top of the shift register.
 | |
| 			bus_handler_.set_control_line_output(Port::B, Line::Two, !!(registers_.shift & 0x80));
 | |
| 		} else {
 | |
| 			// Input mode.
 | |
| 			bus_handler_.set_control_line_output(Port::B, Line::Two, true);
 | |
| 		}
 | |
| 	} else {
 | |
| 		// Shift register is disabled.
 | |
| 		bus_handler_.set_control_line_output(Port::B, Line::Two, control_outputs_[1].lines[1] != LineState::Off);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::set_control_line_output(Port port, Line line, LineState value) {
 | |
| 	if(port == Port::B && line == Line::Two) {
 | |
| 		control_outputs_[port].lines[line] = value;
 | |
| 		evaluate_cb2_output();
 | |
| 	} else {
 | |
| 		// Do nothing if unchanged.
 | |
| 		if(value == control_outputs_[port].lines[line]) {
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		control_outputs_[port].lines[line] = value;
 | |
| 
 | |
| 		if(value != LineState::Input) {
 | |
| 			bus_handler_.run_for(time_since_bus_handler_call_.flush<HalfCycles>());
 | |
| 			bus_handler_.set_control_line_output(port, line, value != LineState::Off);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::shift_in() {
 | |
| 	registers_.shift = uint8_t((registers_.shift << 1) | (control_inputs_[1].lines[1] ? 1 : 0));
 | |
| 	--shift_bits_remaining_;
 | |
| 	if(!shift_bits_remaining_) {
 | |
| 		registers_.interrupt_flags |= InterruptFlag::ShiftRegister;
 | |
| 		reevaluate_interrupts();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <typename T> void MOS6522<T>::shift_out() {
 | |
| 	const bool is_free_running = shift_mode() == ShiftMode::OutUnderT2FreeRunning;
 | |
| 	if(is_free_running || shift_bits_remaining_) {
 | |
| 		// Recirculate bits only if in free-running mode (?)
 | |
| 		const uint8_t incoming_bit = (registers_.shift >> 7) * is_free_running;
 | |
| 		registers_.shift = uint8_t(registers_.shift << 1) | incoming_bit;
 | |
| 		evaluate_cb2_output();
 | |
| 
 | |
| 		--shift_bits_remaining_;
 | |
| 		if(!shift_bits_remaining_) {
 | |
| 			registers_.interrupt_flags |= InterruptFlag::ShiftRegister;
 | |
| 			reevaluate_interrupts();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| }
 | |
| }
 |