1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-19 23:32:28 +00:00
CLK/Components/9918/9918.cpp

552 lines
17 KiB
C++

//
// 9918.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/11/2017.
// Copyright © 2017 Thomas Harte. All rights reserved.
//
#include "9918.hpp"
#include <cassert>
#include <cstring>
using namespace TI;
namespace {
const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(90, 201, 81),
palette_pack(149, 231, 133),
palette_pack(113, 104, 183),
palette_pack(146, 132, 255),
palette_pack(200, 114, 89),
palette_pack(115, 222, 255),
palette_pack(238, 124, 90),
palette_pack(255, 166, 132),
palette_pack(219, 232, 92),
palette_pack(240, 247, 143),
palette_pack(78, 176, 63),
palette_pack(202, 118, 216),
palette_pack(233, 233, 233),
palette_pack(255, 255, 255)
};
}
TMS9918::TMS9918(Personality p) :
crt_(new Outputs::CRT::CRT(342, 1, Outputs::CRT::DisplayType::NTSC60, 4)) {
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"return texture(sampler, coordinate).rgb / vec3(255.0);"
"}");
crt_->set_output_device(Outputs::CRT::OutputDevice::Monitor);
crt_->set_visible_area(Outputs::CRT::Rect(0.055f, 0.025f, 0.9f, 0.9f));
}
std::shared_ptr<Outputs::CRT::CRT> TMS9918::get_crt() {
return crt_;
}
void TMS9918::test_sprite(int sprite_number) {
if(!(status_ & 0x40)) {
status_ = static_cast<uint8_t>((status_ & ~31) | sprite_number);
}
if(sprites_stopped_)
return;
const int sprite_position = ram_[sprite_attribute_table_address_ + (sprite_number << 2)];
// A sprite Y of 208 means "don't scan the list any further".
if(sprite_position == 208) {
sprites_stopped_ = true;
return;
}
const int sprite_row = (row_ - sprite_position)&255;
if(sprite_row < 0 || sprite_row >= sprite_height_) return;
if(active_sprite_slot_ == 4) {
status_ |= 0x40;
return;
}
active_sprites_[active_sprite_slot_].index = sprite_number;
active_sprites_[active_sprite_slot_].row = sprite_row;
active_sprite_slot_++;
}
void TMS9918::get_sprite_contents(int field, int cycles_left, int screen_row) {
int sprite = field / 6;
field %= 6;
while(true) {
const int cycles_in_sprite = std::min(cycles_left, 6 - field);
cycles_left -= cycles_in_sprite;
const int final_field = cycles_in_sprite + field;
assert(sprite < 4);
if(field < 4) {
std::memcpy(
&active_sprites_[sprite].info[field],
&ram_[sprite_attribute_table_address_ + (active_sprites_[sprite].index << 2) + field],
static_cast<size_t>(std::min(4, final_field) - field));
}
field = std::min(4, final_field);
const int sprite_offset = active_sprites_[sprite].info[2] & ~(sprites_16x16_ ? 3 : 0);
const int sprite_address =
sprite_generator_table_address_ + (sprite_offset << 3) + active_sprites_[sprite].row;
while(field < final_field) {
active_sprites_[sprite].image[field - 4] = ram_[sprite_address + ((field - 4) << 4)];
field++;
}
if(!cycles_left) return;
field = 0;
sprite++;
}
}
void TMS9918::run_for(const HalfCycles cycles) {
// As specific as I've been able to get:
// Scanline time is always 227.75 cycles.
// PAL output is 313 lines total. NTSC output is 262 lines total.
// Interrupt is signalled upon entering the lower border.
// Keep a count of cycles separate from internal counts to avoid
// potential errors mapping back and forth.
half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2);
// Convert to 342 cycles per line; the internal clock is 1.5 times the
// nominal 3.579545 Mhz that I've advertised for this part.
int int_cycles = (cycles.as_int() * 3) + cycles_error_;
cycles_error_ = int_cycles & 7;
int_cycles >>= 3;
if(!int_cycles) return;
//
// Break that down as:
// 26 cycles sync;
while(int_cycles) {
// Determine how much time has passed in the remainder of this line, and proceed.
int cycles_left = std::min(342 - column_, int_cycles);
column_ += cycles_left; // column_ is now the column that has been reached in this line.
int_cycles -= cycles_left; // Count down duration to run for.
// ------------------------------
// TODO: memory access slot here.
// ------------------------------
// ------------------------------
// Perform video memory accesses.
// ------------------------------
if(row_ < 192 && !blank_screen_) {
const int access_slot = column_ >> 1; // There are only 171 available memory accesses per line.
switch(line_mode_) {
case LineMode::Text:
access_pointer_ = std::min(30, access_slot);
if(access_pointer_ >= 30 && access_pointer_ < 150) {
const int row_base = pattern_name_address_ + (row_ >> 3) * 40;
const int end = std::min(150, access_slot);
// Pattern names are collected every third window starting from window 30.
const int pattern_names_start = (access_pointer_ - 30 + 2) / 3;
const int pattern_names_end = (end - 30 + 2) / 3;
std::memcpy(&pattern_names_[pattern_names_start], &ram_[row_base + pattern_names_start], static_cast<size_t>(pattern_names_end - pattern_names_start));
// Patterns are collected every third window starting from window 32.
const int pattern_buffer_start = (access_pointer_ - 32 + 2) / 3;
const int pattern_buffer_end = (end - 32 + 2) / 3;
for(int column = pattern_buffer_start; column < pattern_buffer_end; ++column) {
pattern_buffer_[column] = ram_[pattern_generator_table_address_ + (pattern_names_[column] << 3) + (row_ & 7)];
}
}
break;
case LineMode::Character:
// Four access windows: no collection.
if(access_pointer_ < 5)
access_pointer_ = std::min(5, access_slot);
// Then ten access windows are filled with collection of sprite 3 and 4 details.
if(access_pointer_ >= 5 && access_pointer_ < 15) {
int end = std::min(15, access_slot);
get_sprite_contents(access_pointer_ - 5 + 14, end - access_pointer_, row_ - 1);
access_pointer_ = std::min(15, access_slot);
}
// Four more access windows: no collection.
if(access_pointer_ >= 15 && access_pointer_ < 19)
access_pointer_ = std::min(19, access_slot);
// Then eight access windows fetch the y position for the first eight sprites.
while(access_pointer_ < 27 && access_pointer_ < access_slot) {
test_sprite(access_pointer_ - 19);
access_pointer_++;
}
// The next 128 access slots are video and sprite collection interleaved.
if(access_pointer_ >= 27 && access_pointer_ < 155) {
int end = std::min(155, access_slot);
int row_base = pattern_name_address_;
int pattern_base = pattern_generator_table_address_;
int colour_base = colour_table_address_;
if(screen_mode_ == 1) {
pattern_base &= 0x2000 | ((row_ & 0xc0) << 5);
colour_base &= 0x2000 | ((row_ & 0xc0) << 5);
}
row_base += (row_ << 2)&~31;
// Pattern names are collected every fourth window starting from window 27.
const int pattern_names_start = (access_pointer_ - 27 + 3) >> 2;
const int pattern_names_end = (end - 27 + 3) >> 2;
std::memcpy(&pattern_names_[pattern_names_start], &ram_[row_base + pattern_names_start], static_cast<size_t>(pattern_names_end - pattern_names_start));
// Colours are collected ever fourth window starting from window 29.
const int colours_start = (access_pointer_ - 29 + 3) >> 2;
const int colours_end = (end - 29 + 3) >> 2;
if(screen_mode_ != 1) {
for(int column = colours_start; column < colours_end; ++column) {
colour_buffer_[column] = ram_[colour_base + (pattern_names_[column] >> 3)];
}
} else {
for(int column = colours_start; column < colours_end; ++column) {
colour_buffer_[column] = ram_[colour_base + (pattern_names_[column] << 3) + (row_ & 7)];
}
}
// Patterns are collected ever fourth window starting from window 30.
const int pattern_buffer_start = (access_pointer_ - 30 + 3) >> 2;
const int pattern_buffer_end = (end - 30 + 3) >> 2;
for(int column = pattern_buffer_start; column < pattern_buffer_end; ++column) {
pattern_buffer_[column] = ram_[pattern_base + (pattern_names_[column] << 3) + (row_ & 7)];
}
// Sprite slots occur in three quarters of ever fourth window starting from window 28.
const int sprite_start = (access_pointer_ - 28 + 3) >> 2;
const int sprite_end = (end - 28 + 3) >> 2;
// assert(sprite_start >= 0 && sprite_end >= 0 && sprite_start <= 24 && sprite_end <= 24);
for(int column = sprite_start; column < sprite_end; ++column) {
if(column&3) {
test_sprite(7 + column - (column >> 2));
}
}
access_pointer_ = std::min(155, access_slot);
}
// Two access windows: no collection.
if(access_pointer_ < 157)
access_pointer_ = std::min(157, access_slot);
// Fourteen access windows: collect initial sprite information.
if(access_pointer_ >= 157 && access_pointer_ < 171) {
int end = std::min(171, access_slot);
get_sprite_contents(access_pointer_ - 157, end - access_pointer_, row_);
access_pointer_ = std::min(171, access_slot);
}
break;
}
}
// --------------------------
// End video memory accesses.
// --------------------------
// --------------------
// Output video stream.
// --------------------
if(row_ < 192 && !blank_screen_) {
// ----------------------
// Output horizontal sync
// ----------------------
if(!output_column_ && column_ >= 26) {
crt_->output_sync(static_cast<unsigned int>(26));
output_column_ = 26;
}
// --------------------------
// TODO: output colour burst.
// --------------------------
// -------------------
// Output left border.
// -------------------
if(output_column_ >= 26) {
int pixels_end = std::min(first_pixel_column_, column_);
if(output_column_ < pixels_end) {
output_border(pixels_end - output_column_);
output_column_ = pixels_end;
// Grab a pointer for drawing pixels to, if the moment has arrived.
if(pixels_end == first_pixel_column_) {
pixel_base_ = pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_)));
}
}
}
// --------------
// Output pixels.
// --------------
if(output_column_ >= first_pixel_column_) {
int pixels_end = std::min(first_right_border_column_, column_);
if(output_column_ < pixels_end) {
switch(line_mode_) {
case LineMode::Text: {
const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] };
const int shift = (output_column_ - first_pixel_column_) % 6;
int byte_column = (output_column_ - first_pixel_column_) / 6;
int pattern = pattern_buffer_[byte_column] << shift;
int pixels_left = pixels_end - output_column_;
int length = std::min(pixels_left, 6 - shift);
while(true) {
pixels_left -= length;
while(length--) {
*pixel_target_ = colours[(pattern >> 7)&0x01];
pixel_target_++;
pattern <<= 1;
}
if(!pixels_left) break;
length = std::min(6, pixels_left);
byte_column++;
pattern = pattern_buffer_[byte_column];
}
output_column_ = pixels_end;
} break;
case LineMode::Character:
while(output_column_ < pixels_end) {
int base = (output_column_ - first_pixel_column_);
int address = base >> 3;
uint8_t colour = colour_buffer_[address];
uint8_t pattern = pattern_buffer_[address];
pattern >>= ((base&7)^7);
*pixel_target_ = (pattern&1) ? palette[colour >> 4] : palette[colour & 15];
pixel_target_ ++;
output_column_ ++;
}
break;
}
if(output_column_ == first_right_border_column_) {
// Just chuck the sprites on. Quick hack!
for(size_t c = 0; c < 4; ++c) {
const size_t sprite_index = c^3;
if(static_cast<int>(sprite_index) >= active_sprite_slot_) continue;
if(!(active_sprites_[sprite_index].info[3]&15)) continue;
for(int p = 0; p < (sprites_16x16_ ? 16 : 8); ++p) {
int x = active_sprites_[sprite_index].info[1] + p;
if(active_sprites_[sprite_index].info[3] & 0x80) x -= 32;
if(x >= 0 && x < 256) {
if(((active_sprites_[sprite_index].image[p >> 3] << (p&7)) & 0x80)) pixel_base_[x] = palette[active_sprites_[sprite_index].info[3]&15];
}
}
}
crt_->output_data(static_cast<unsigned int>(first_right_border_column_ - first_pixel_column_), 1);
pixel_target_ = nullptr;
active_sprite_slot_ = 0;
sprites_stopped_ = false;
}
}
}
// --------------------
// Output right border.
// --------------------
if(output_column_ >= first_right_border_column_) {
output_border(column_ - output_column_);
output_column_ = column_;
}
} else if(row_ >= first_vsync_line_ && row_ < first_vsync_line_+3) {
// Vertical sync.
if(column_ == 342) {
crt_->output_sync(static_cast<unsigned int>(342));
}
} else {
// Blank.
if(!output_column_ && column_ >= 26) {
crt_->output_sync(static_cast<unsigned int>(26));
output_column_ = 26;
}
if(output_column_ >= 26) {
output_border(column_ - output_column_);
output_column_ = column_;
}
}
// -----------------
// End video stream.
// -----------------
// -----------------------------------
// Prepare for next line, potentially.
// -----------------------------------
if(column_ == 342) {
access_pointer_ = column_ = output_column_ = 0;
row_ = (row_ + 1) % frame_lines_;
if(row_ == 192) status_ |= 0x80;
screen_mode_ = next_screen_mode_;
blank_screen_ = next_blank_screen_;
switch(screen_mode_) {
case 2:
line_mode_ = LineMode::Text;
first_pixel_column_ = 69;
first_right_border_column_ = 309;
break;
default:
line_mode_ = LineMode::Character;
first_pixel_column_ = 63;
first_right_border_column_ = 319;
break;
}
}
}
}
void TMS9918::output_border(int cycles) {
pixel_target_ = reinterpret_cast<uint32_t *>(crt_->allocate_write_area(1));
if(pixel_target_) *pixel_target_ = palette[background_colour_];
crt_->output_level(static_cast<unsigned int>(cycles));
}
// TODO: as a temporary development measure, memory access below is magically instantaneous. Correct that.
void TMS9918::set_register(int address, uint8_t value) {
// Writes to address 0 are writes to the video RAM. Store
// the value and return.
if(!(address & 1)) {
write_phase_ = false;
read_ahead_buffer_ = value;
ram_[ram_pointer_ & 16383] = value;
ram_pointer_++;
return;
}
// Writes to address 1 are performed in pairs; if this is the
// low byte of a value, store it and wait for the high byte.
if(!write_phase_) {
low_write_ = value;
write_phase_ = true;
return;
}
write_phase_ = false;
if(value & 0x80) {
// This is a write to a register.
switch(value & 7) {
case 0:
next_screen_mode_ = (next_screen_mode_ & 6) | ((low_write_ & 2) >> 1);
// printf("NSM: %02x\n", next_screen_mode_);
break;
case 1:
next_blank_screen_ = !(low_write_ & 0x40);
generate_interrupts_ = !!(low_write_ & 0x20);
next_screen_mode_ = (next_screen_mode_ & 1) | ((low_write_ & 0x18) >> 3);
sprites_16x16_ = !!(low_write_ & 0x02);
sprites_magnified_ = !!(low_write_ & 0x01);
sprite_height_ = 8;
if(sprites_16x16_) sprite_height_ <<= 1;
if(sprites_magnified_) sprite_height_ <<= 1;
// printf("NSM: %02x\n", next_screen_mode_);
break;
case 2:
pattern_name_address_ = static_cast<uint16_t>((low_write_ & 0xf) << 10);
break;
case 3:
colour_table_address_ = static_cast<uint16_t>(low_write_ << 6);
break;
case 4:
pattern_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
break;
case 5:
sprite_attribute_table_address_ = static_cast<uint16_t>((low_write_ & 0x7f) << 7);
break;
case 6:
sprite_generator_table_address_ = static_cast<uint16_t>((low_write_ & 0x07) << 11);
break;
case 7:
text_colour_ = low_write_ >> 4;
background_colour_ = low_write_ & 0xf;
break;
}
} else {
// This is a write to the RAM pointer.
ram_pointer_ = static_cast<uint16_t>(low_write_ | (value << 8));
if(!(value & 0x40)) {
// Officially a 'read' set, so perform lookahead.
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
ram_pointer_++;
}
}
}
uint8_t TMS9918::get_register(int address) {
write_phase_ = false;
// Reads from address 0 read video RAM, via the read-ahead buffer.
if(!(address & 1)) {
uint8_t result = read_ahead_buffer_;
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
ram_pointer_++;
return result;
}
// Reads from address 1 get the status register.
uint8_t result = status_;
status_ &= ~(0x80 | 0x40 | 0x20);
return result;
}
HalfCycles TMS9918::get_time_until_interrupt() {
if(!generate_interrupts_) return HalfCycles(-1);
if(get_interrupt_line()) return HalfCycles(0);
const int half_cycles_per_frame = frame_lines_ * 228 * 2;
int half_cycles_remaining = (192 * 228 * 2 + half_cycles_per_frame - half_cycles_into_frame_.as_int()) % half_cycles_per_frame;
return HalfCycles(half_cycles_remaining);
}
bool TMS9918::get_interrupt_line() {
return (status_ & 0x80) && generate_interrupts_;
}