1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-02 16:04:59 +00:00
CLK/InstructionSets/M68k/Implementation/ExecutorImplementation.hpp
2022-05-09 09:18:02 -04:00

577 lines
17 KiB
C++

//
// ExecutorImplementation.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/05/2022.
// Copyright © 2022 Thomas Harte. All rights reserved.
//
#ifndef InstructionSets_M68k_ExecutorImplementation_hpp
#define InstructionSets_M68k_ExecutorImplementation_hpp
#include "../Perform.hpp"
#include <cassert>
namespace InstructionSet {
namespace M68k {
#define An(x) registers_[8 + x]
#define Dn(x) registers_[x]
#define sp An(7)
template <Model model, typename BusHandler>
Executor<model, BusHandler>::Executor(BusHandler &handler) : bus_handler_(handler) {
reset();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::reset() {
// Establish: supervisor state, all interrupts blocked.
status_.set_status(0b0010'0011'1000'0000);
did_update_status();
// Seed stack pointer and program counter.
sp.l = read<uint32_t>(0);
program_counter_.l = read<uint32_t>(4);
}
template <Model model, typename BusHandler>
template <typename IntT>
IntT Executor<model, BusHandler>::read(uint32_t address, bool is_from_pc) {
// TODO: check for an alignment exception, both here and in write.
//
// TODO: omit generation of the FunctionCode if the BusHandler doesn't receive it.
return bus_handler_.template read<IntT>(address, FunctionCode((status_.is_supervisor_ << 2) | 1 << int(is_from_pc)));
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::write(uint32_t address, IntT value) {
bus_handler_.template write<IntT>(address, value, FunctionCode((status_.is_supervisor_ << 2) | 1));
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::read(DataSize size, uint32_t address, CPU::SlicedInt32 &value) {
switch(size) {
case DataSize::Byte: value.b = read<uint8_t>(address); break;
case DataSize::Word: value.w = read<uint16_t>(address); break;
case DataSize::LongWord: value.l = read<uint32_t>(address); break;
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::write(DataSize size, uint32_t address, CPU::SlicedInt32 value) {
switch(size) {
case DataSize::Byte: write<uint8_t>(address, value.b); break;
case DataSize::Word: write<uint16_t>(address, value.w); break;
case DataSize::LongWord: write<uint32_t>(address, value.l); break;
}
}
template <Model model, typename BusHandler>
template <typename IntT> IntT Executor<model, BusHandler>::read_pc() {
const IntT result = read<IntT>(program_counter_.l, true);
if constexpr (sizeof(IntT) == 4) {
program_counter_.l += 4;
} else {
program_counter_.l += 2;
}
return result;
}
template <Model model, typename BusHandler>
uint32_t Executor<model, BusHandler>::index_8bitdisplacement() {
// TODO: if not a 68000, check bit 8 for whether this should be a full extension word;
// also include the scale field even if not.
const auto extension = read_pc<uint16_t>();
const auto offset = int8_t(extension);
const int register_index = (extension >> 12) & 7;
const uint32_t displacement = registers_[register_index + ((extension >> 12) & 0x08)].l;
const uint32_t sized_displacement = (extension & 0x800) ? displacement : int16_t(displacement);
return offset + sized_displacement;
}
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::EffectiveAddress Executor<model, BusHandler>::calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index) {
EffectiveAddress ea;
switch(instruction.mode(index)) {
case AddressingMode::None:
// Permit an uninitialised effective address to be returned;
// this value shouldn't be used.
break;
//
// Operands that don't have effective addresses, which are returned as values.
//
case AddressingMode::DataRegisterDirect:
ea.value = Dn(instruction.reg(index));
ea.requires_fetch = false;
break;
case AddressingMode::AddressRegisterDirect:
ea.value = An(instruction.reg(index));
ea.requires_fetch = false;
break;
case AddressingMode::Quick:
ea.value.l = quick(opcode, instruction.operation);
ea.requires_fetch = false;
break;
case AddressingMode::ImmediateData:
switch(instruction.operand_size()) {
case DataSize::Byte:
ea.value.l = read_pc<uint16_t>() & 0xff;
break;
case DataSize::Word:
ea.value.l = read_pc<uint16_t>();
break;
case DataSize::LongWord:
ea.value.l = read_pc<uint32_t>();
break;
}
ea.requires_fetch = false;
break;
//
// Absolute addresses.
//
case AddressingMode::AbsoluteShort:
ea.value.l = int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::AbsoluteLong:
ea.value.l = read_pc<uint32_t>();
ea.requires_fetch = true;
break;
//
// Address register indirects.
//
case AddressingMode::AddressRegisterIndirect:
ea.value = An(instruction.reg(index));
ea.requires_fetch = true;
break;
case AddressingMode::AddressRegisterIndirectWithPostincrement: {
const auto reg = instruction.reg(index);
ea.value = An(reg);
ea.requires_fetch = true;
switch(instruction.operand_size()) {
case DataSize::Byte: An(reg).l += byte_increments[reg]; break;
case DataSize::Word: An(reg).l += 2; break;
case DataSize::LongWord: An(reg).l += 4; break;
}
} break;
case AddressingMode::AddressRegisterIndirectWithPredecrement: {
const auto reg = instruction.reg(index);
switch(instruction.operand_size()) {
case DataSize::Byte: An(reg).l -= byte_increments[reg]; break;
case DataSize::Word: An(reg).l -= 2; break;
case DataSize::LongWord: An(reg).l -= 4; break;
}
ea.value = An(reg);
ea.requires_fetch = true;
} break;
case AddressingMode::AddressRegisterIndirectWithDisplacement:
ea.value.l = An(instruction.reg(index)).l + int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::AddressRegisterIndirectWithIndex8bitDisplacement:
ea.value.l = An(instruction.reg(index)).l + index_8bitdisplacement();
ea.requires_fetch = true;
break;
//
// PC-relative addresses.
//
// TODO: rephrase these in terms of instruction_address_. Just for security
// against whatever mutations the PC has been through already to get to here.
//
case AddressingMode::ProgramCounterIndirectWithDisplacement:
ea.value.l = program_counter_.l + int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::ProgramCounterIndirectWithIndex8bitDisplacement:
ea.value.l = program_counter_.l + index_8bitdisplacement();
ea.requires_fetch = true;
break;
default:
// TODO.
assert(false);
break;
}
return ea;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::run_for_instructions(int count) {
while(count--) {
// TODO: check interrupt level, trace flag.
// Read the next instruction.
instruction_address_ = program_counter_.l;
const auto opcode = read_pc<uint16_t>();
const Preinstruction instruction = decoder_.decode(opcode);
if(!status_.is_supervisor_ && instruction.requires_supervisor()) {
raise_exception(8);
continue;
}
if(instruction.operation == Operation::Undefined) {
switch(opcode & 0xf000) {
default:
raise_exception(4);
continue;
case 0xa000:
raise_exception(10);
continue;
case 0xf000:
raise_exception(11);
continue;
}
}
// Temporary storage.
CPU::SlicedInt32 operand_[2];
EffectiveAddress effective_address_[2];
// Calculate effective addresses; copy 'addresses' into the
// operands by default both: (i) because they might be values,
// rather than addresses; and (ii) then they'll be there for use
// by LEA and PEA.
//
// TODO: much of this work should be performed by a full Decoder,
// so that it can be cached.
effective_address_[0] = calculate_effective_address(instruction, opcode, 0);
effective_address_[1] = calculate_effective_address(instruction, opcode, 1);
operand_[0] = effective_address_[0].value;
operand_[1] = effective_address_[1].value;
// Obtain the appropriate sequence.
//
// TODO: make a decision about whether this goes into a fully-decoded Instruction.
const auto flags = operand_flags<model>(instruction.operation);
// TODO: potential alignment exception, here and in store.
#define fetch_operand(n) \
if(effective_address_[n].requires_fetch) { \
read(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \
}
if(flags & FetchOp1) { fetch_operand(0); }
if(flags & FetchOp2) { fetch_operand(1); }
#undef fetch_operand
perform<model>(instruction, operand_[0], operand_[1], status_, *this);
// TODO: rephrase to avoid conditional below.
#define store_operand(n) \
if(!effective_address_[n].requires_fetch) { \
if(instruction.mode(n) == AddressingMode::DataRegisterDirect) { \
Dn(instruction.reg(n)) = operand_[n]; \
} else { \
An(instruction.reg(n)) = operand_[n]; \
} \
} else { \
write(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \
}
if(flags & StoreOp1) { store_operand(0); }
if(flags & StoreOp2) { store_operand(1); }
#undef store_operand
}
}
// MARK: - State
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::Registers Executor<model, BusHandler>::get_state() {
Registers result;
for(int c = 0; c < 8; c++) {
result.data[c] = Dn(c).l;
}
for(int c = 0; c < 7; c++) {
result.address[c] = An(c).l;
}
result.status = status_.status();
result.program_counter = program_counter_.l;
stack_pointers_[status_.is_supervisor_] = sp;
result.user_stack_pointer = stack_pointers_[0].l;
result.supervisor_stack_pointer = stack_pointers_[1].l;
return result;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_state(const Registers &state) {
for(int c = 0; c < 8; c++) {
Dn(c).l = state.data[c];
}
for(int c = 0; c < 7; c++) {
An(c).l = state.address[c];
}
status_.set_status(state.status);
program_counter_.l = state.program_counter;
stack_pointers_[0].l = state.user_stack_pointer;
stack_pointers_[1].l = state.supervisor_stack_pointer;
sp = stack_pointers_[status_.is_supervisor_];
}
// MARK: - Flow Control.
// TODO: flow control, all below here.
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::raise_exception(int index, bool use_current_instruction_pc) {
const uint32_t address = index << 2;
// Grab the status to store, then switch into supervisor mode.
const uint16_t status = status_.status();
status_.is_supervisor_ = 1;
did_update_status();
// Push status and the program counter at instruction start.
write<uint32_t>(sp.l - 4, use_current_instruction_pc ? instruction_address_ : program_counter_.l);
write<uint16_t>(sp.l - 6, status);
sp.l -= 6;
// Fetch the new program counter.
program_counter_.l = read<uint32_t>(address);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::did_update_status() {
// Shuffle the stack pointers.
stack_pointers_[active_stack_pointer_] = sp;
sp = stack_pointers_[status_.is_supervisor_];
active_stack_pointer_ = status_.is_supervisor_;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::stop() {}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_pc(uint32_t address) {
program_counter_.l = address;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::add_pc(uint32_t offset) {
program_counter_.l = instruction_address_ + offset;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::bsr(uint32_t offset) {
sp.l -= 4;
write<uint32_t>(sp.l, program_counter_.l);
program_counter_.l = instruction_address_ + offset;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::jsr(uint32_t address) {
sp.l -= 4;
write<uint32_t>(sp.l, program_counter_.l);
program_counter_.l = address;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::link(Preinstruction instruction, uint32_t offset) {
const auto reg = 8 + instruction.reg<0>();
sp.l -= 4;
write<uint32_t>(sp.l, Dn(reg).l);
Dn(reg) = sp;
sp.l += offset;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::unlink(uint32_t &address) {
sp.l = address;
address = read<uint32_t>(sp.l);
sp.l += 4;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::pea(uint32_t address) {
sp.l -= 4;
write<uint32_t>(sp.l, address);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::rtr() {
status_.set_ccr(read<uint16_t>(sp.l));
sp.l += 2;
rts();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::rte() {
status_.set_status(read<uint16_t>(sp.l));
sp.l += 2;
rts();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::rts() {
program_counter_.l = read<uint32_t>(sp.l);
sp.l += 4;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::tas(Preinstruction instruction, uint32_t address) {
uint8_t value;
if(instruction.mode<0>() != AddressingMode::DataRegisterDirect) {
value = read<uint8_t>(address);
write<uint8_t>(address, value | 0x80);
} else {
value = uint8_t(address);
Dn(instruction.reg<0>()).b = uint8_t(address | 0x80);
}
status_.overflow_flag_ = status_.carry_flag_ = 0;
status_.zero_result_ = value;
status_.negative_flag_ = value & 0x80;
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::movep(Preinstruction instruction, uint32_t source, uint32_t dest) {
if(instruction.mode<0>() == AddressingMode::DataRegisterDirect) {
// Move register to memory.
const uint32_t reg = source;
uint32_t address = dest;
if constexpr (sizeof(IntT) == 4) {
write<uint8_t>(address, uint8_t(reg >> 24));
address += 2;
write<uint8_t>(address, uint8_t(reg >> 16));
address += 2;
}
write<uint8_t>(address, uint8_t(reg >> 8));
address += 2;
write<uint8_t>(address, uint8_t(reg));
} else {
// Move memory to register.
uint32_t &reg = Dn(instruction.reg<1>()).l;
uint32_t address = source;
if constexpr (sizeof(IntT) == 4) {
reg = read<uint8_t>(address) << 24;
address += 2;
reg |= read<uint8_t>(address) << 16;
address += 2;
} else {
reg &= 0xffff0000;
}
reg |= read<uint8_t>(address) << 8;
address += 2;
reg |= read<uint8_t>(address);
}
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest) {
// Move registers to memory. This is the only permitted use of the predecrement mode,
// which reverses output order.
if(instruction.mode<1>() == AddressingMode::AddressRegisterIndirectWithPredecrement) {
// The structure of the code in the mainline part of the executor is such
// that the address register will already have been predecremented before
// reaching here, and it'll have been by two bytes per the operand size
// rather than according to the instruction size. That's not wanted, so undo it.
//
// TODO: with the caveat that the 68020+ have different behaviour:
//
// "For the MC68020, MC68030, MC68040, and CPU32, if the addressing register is also
// moved to memory, the value written is the initial register value decremented by the
// size of the operation. The MC68000 and MC68010 write the initial register value
// (not decremented)."
An(instruction.reg<1>()).l += 2;
uint32_t address = An(instruction.reg<1>()).l;
int index = 15;
while(source) {
if(source & 1) {
address -= sizeof(IntT);
write<IntT>(address, IntT(registers_[index].l));
}
--index;
source >>= 1;
}
An(instruction.reg<1>()).l = address;
return;
}
int index = 0;
while(source) {
if(source & 1) {
write<IntT>(dest, IntT(registers_[index].l));
dest += sizeof(IntT);
}
++index;
source >>= 1;
}
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest) {
// Move memory to registers.
//
// A 68000 convention has been broken here; the instruction form is:
// MOVEM <ea>, #
// ... but the instruction is encoded as [MOVEM] [#] [ea].
//
// This project's decoder decodes as #, <ea>.
int index = 0;
while(source) {
if(source & 1) {
if constexpr (sizeof(IntT) == 2) {
registers_[index].l = int16_t(read<uint16_t>(dest));
} else {
registers_[index].l = read<uint32_t>(dest);
}
dest += sizeof(IntT);
}
++index;
source >>= 1;
}
if(instruction.mode<1>() == AddressingMode::AddressRegisterIndirectWithPostincrement) {
// "If the effective address is specified by the postincrement mode ...
// [i]f the addressing register is also loaded from memory, the memory value is
// ignored and the register is written with the postincremented effective address."
An(instruction.reg<1>()).l = dest;
}
}
#undef sp
#undef Dn
#undef An
}
}
#endif /* InstructionSets_M68k_ExecutorImplementation_hpp */