mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-03 08:05:40 +00:00
316 lines
10 KiB
C++
316 lines
10 KiB
C++
//
|
|
// CRT.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 19/07/2015.
|
|
// Copyright © 2015 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "CRT.hpp"
|
|
#include <stdarg.h>
|
|
|
|
static const int bufferWidth = 512;
|
|
static const int bufferHeight = 512;
|
|
|
|
static const int syncCapacityLineChargeThreshold = 3;
|
|
static const int millisecondsHorizontalRetraceTime = 16;
|
|
static const int scanlinesVerticalRetraceTime = 26;
|
|
|
|
using namespace Outputs;
|
|
|
|
CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...)
|
|
{
|
|
// store fundamental display configuration properties
|
|
_height_of_display = height_of_display;
|
|
_cycles_per_line = cycles_per_line;
|
|
|
|
// generate timing values implied by the given arbuments
|
|
_hsync_error_window = cycles_per_line >> 5;
|
|
|
|
// generate buffers for signal storage as requested — format is
|
|
// number of buffers, size of buffer 1, size of buffer 2...
|
|
_numberOfBuffers = number_of_buffers;
|
|
_bufferSizes = new int[_numberOfBuffers];
|
|
_buffers = new uint8_t *[_numberOfBuffers];
|
|
|
|
va_list va;
|
|
va_start(va, number_of_buffers);
|
|
for(int c = 0; c < _numberOfBuffers; c++)
|
|
{
|
|
_bufferSizes[c] = va_arg(va, int);
|
|
_buffers[c] = new uint8_t[bufferHeight * bufferWidth * _bufferSizes[c]];
|
|
}
|
|
va_end(va);
|
|
|
|
// reset pointer into output buffers
|
|
_write_allocation_pointer = 0;
|
|
|
|
// reset the run buffer pointer
|
|
_run_pointer = 0;
|
|
|
|
// reset raster position
|
|
_horizontalOffset = 0.0f;
|
|
_verticalOffset = 0.0f;
|
|
|
|
// reset flywheel sync
|
|
_expected_next_hsync = cycles_per_line;
|
|
_horizontal_counter = 0;
|
|
|
|
// reset the vertical charge capacitor
|
|
_sync_capacitor_charge_level = 0;
|
|
|
|
// start off not in horizontal sync, not receiving a sync signal
|
|
_is_receiving_sync = false;
|
|
_is_in_hsync = false;
|
|
}
|
|
|
|
CRT::~CRT()
|
|
{
|
|
delete[] _bufferSizes;
|
|
for(int c = 0; c < _numberOfBuffers; c++)
|
|
{
|
|
delete[] _buffers[c];
|
|
}
|
|
delete[] _buffers;
|
|
}
|
|
|
|
#pragma mark - Sync loop
|
|
|
|
CRT::SyncEvent CRT::advance_to_next_sync_event(bool hsync_is_requested, bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced)
|
|
{
|
|
// do we recognise this hsync, thereby adjusting time expectations?
|
|
if ((_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) && hsync_is_requested) {
|
|
_did_detect_hsync = true;
|
|
|
|
int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter;
|
|
_expected_next_hsync = (_expected_next_hsync + time_now) >> 1;
|
|
// printf("to %d for %d\n", _expected_next_hsync, time_now);
|
|
}
|
|
|
|
SyncEvent proposedEvent = SyncEvent::None;
|
|
int proposedSyncTime = cycles_to_run_for;
|
|
|
|
// have we overrun the maximum permitted number of horizontal syncs for this frame?
|
|
if (_hsync_counter > _height_of_display + 10) {
|
|
*cycles_advanced = 0;
|
|
return SyncEvent::StartHSync;
|
|
}
|
|
|
|
// will we end an ongoing hsync?
|
|
const int endOfHSyncTime = (millisecondsHorizontalRetraceTime*_cycles_per_line) >> 6;
|
|
if (_horizontal_counter < endOfHSyncTime && _horizontal_counter+proposedSyncTime >= endOfHSyncTime) {
|
|
proposedSyncTime = endOfHSyncTime - _horizontal_counter;
|
|
proposedEvent = SyncEvent::EndHSync;
|
|
}
|
|
|
|
// will we start an hsync?
|
|
if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) {
|
|
proposedSyncTime = _expected_next_hsync - _horizontal_counter;
|
|
proposedEvent = SyncEvent::StartHSync;
|
|
}
|
|
|
|
// will an acceptable vertical sync be triggered?
|
|
if (vsync_is_charging && !_vretrace_counter) {
|
|
const int startOfVSyncTime = syncCapacityLineChargeThreshold*_cycles_per_line;
|
|
|
|
if (_sync_capacitor_charge_level < startOfVSyncTime && _sync_capacitor_charge_level + proposedSyncTime >= startOfVSyncTime) {
|
|
proposedSyncTime = startOfVSyncTime - _sync_capacitor_charge_level;
|
|
proposedEvent = SyncEvent::StartVSync;
|
|
}
|
|
}
|
|
|
|
// will an ongoing vertical sync end?
|
|
if (_vretrace_counter > 0) {
|
|
if (_vretrace_counter < proposedSyncTime) {
|
|
proposedSyncTime = _vretrace_counter;
|
|
proposedEvent = SyncEvent::EndVSync;
|
|
}
|
|
}
|
|
|
|
*cycles_advanced = proposedSyncTime;
|
|
return proposedEvent;
|
|
}
|
|
|
|
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const CRTRun::Type type, const char *data_type)
|
|
{
|
|
// this is safe to keep locally because it accumulates over this run of cycles only
|
|
int buffer_offset = 0;
|
|
|
|
while(number_of_cycles) {
|
|
|
|
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
|
|
// set it to false for the next run through this loop (if any)
|
|
int next_run_length;
|
|
SyncEvent next_event = advance_to_next_sync_event(hsync_requested, vsync_charging, number_of_cycles, &next_run_length);
|
|
hsync_requested = false;
|
|
|
|
// get a run from the allocated list, allocating more if we're about to overrun
|
|
if(_run_pointer >= _all_runs.size())
|
|
{
|
|
_all_runs.resize((_all_runs.size() * 2)+1);
|
|
}
|
|
|
|
CRTRun *nextRun = &_all_runs[_run_pointer];
|
|
_run_pointer++;
|
|
|
|
// set the type, initial raster position and type of this run
|
|
nextRun->type = type;
|
|
nextRun->start_point.dst_x = _horizontalOffset;
|
|
nextRun->start_point.dst_y = _verticalOffset;
|
|
nextRun->data_type = data_type;
|
|
|
|
// if this is a data or level run then store a starting data position
|
|
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
|
|
{
|
|
nextRun->start_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
|
|
nextRun->start_point.dst_x = (_write_target_pointer + buffer_offset) / bufferWidth;
|
|
}
|
|
|
|
// advance the raster position as dictated by current sync status
|
|
if (_vretrace_counter > 0)
|
|
{
|
|
_verticalOffset = std::max(0.0f, _verticalOffset - (float)number_of_cycles / (float)(scanlinesVerticalRetraceTime * _cycles_per_line));
|
|
}
|
|
else
|
|
{
|
|
_verticalOffset = std::min(1.0f, _verticalOffset + (float)number_of_cycles / (float)(_height_of_display * _cycles_per_line));
|
|
}
|
|
|
|
if (_is_in_hsync)
|
|
{
|
|
_horizontalOffset = std::max(0.0f, _horizontalOffset - (float)(((millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6) * number_of_cycles) / (float)_cycles_per_line);
|
|
}
|
|
else
|
|
{
|
|
_horizontalOffset = std::min(1.0f, _horizontalOffset + (float)((((64 - millisecondsHorizontalRetraceTime) * _cycles_per_line) >> 6) * number_of_cycles) / (float)_cycles_per_line);
|
|
}
|
|
|
|
// store the final raster position
|
|
nextRun->end_point.dst_x = _horizontalOffset;
|
|
nextRun->end_point.dst_y = _verticalOffset;
|
|
|
|
// if this is a data run then advance the buffer pointer
|
|
if(type == CRTRun::Type::Data)
|
|
{
|
|
buffer_offset += next_run_length;
|
|
}
|
|
|
|
// if this is a data or level run then store the end point
|
|
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
|
|
{
|
|
nextRun->end_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
|
|
nextRun->end_point.dst_x = (_write_target_pointer + buffer_offset) / bufferWidth;
|
|
}
|
|
|
|
// decrement the number of cycles left to run for and increment the
|
|
// horizontal counter appropriately
|
|
number_of_cycles -= next_run_length;
|
|
_horizontal_counter += next_run_length;
|
|
|
|
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
|
|
if (vsync_charging)
|
|
_sync_capacitor_charge_level += next_run_length;
|
|
else
|
|
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0);
|
|
|
|
// decrement the vertical retrace counter, making sure it stops at 0
|
|
_vretrace_counter = std::max(_vretrace_counter - next_run_length, 0);
|
|
|
|
// react to the incoming event...
|
|
switch(next_event) {
|
|
|
|
// start of hsync: zero the scanline counter, note that we're now in
|
|
// horizontal sync, increment the lines-in-this-frame counter
|
|
case SyncEvent::StartHSync:
|
|
_horizontal_counter = 0;
|
|
_is_in_hsync = true;
|
|
_hsync_counter++;
|
|
break;
|
|
|
|
// end of horizontal sync: update the flywheel's velocity, note that we're no longer
|
|
// in horizontal sync
|
|
case SyncEvent::EndHSync:
|
|
if (!_did_detect_hsync) {
|
|
_expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1;
|
|
}
|
|
_did_detect_hsync = false;
|
|
_is_in_hsync = false;
|
|
break;
|
|
|
|
// start of vertical sync: reset the lines-in-this-frame counter,
|
|
// load the retrace counter with the amount of time it'll take to retrace
|
|
case SyncEvent::StartVSync:
|
|
_vretrace_counter = scanlinesVerticalRetraceTime * _cycles_per_line;
|
|
_hsync_counter = 0;
|
|
break;
|
|
|
|
// end of vertical sync: tell the delegate that we finished vertical sync,
|
|
// releasing all runs back into the common pool
|
|
case SyncEvent::EndVSync:
|
|
if(_delegate != nullptr)
|
|
_delegate->crt_did_start_vertical_retrace_with_runs(&_all_runs[0], _run_pointer);
|
|
_run_pointer = 0;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma mark - delegate
|
|
|
|
void CRT::set_crt_delegate(CRTDelegate *delegate)
|
|
{
|
|
_delegate = delegate;
|
|
}
|
|
|
|
#pragma mark - stream feeding methods
|
|
|
|
/*
|
|
These all merely channel into advance_cycles, supplying appropriate arguments
|
|
*/
|
|
void CRT::output_sync(int number_of_cycles)
|
|
{
|
|
bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice
|
|
_is_receiving_sync = true;
|
|
advance_cycles(number_of_cycles, _hsync_requested, true, CRTRun::Type::Sync, nullptr);
|
|
}
|
|
|
|
void CRT::output_blank(int number_of_cycles)
|
|
{
|
|
_is_receiving_sync = false;
|
|
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Blank, nullptr);
|
|
}
|
|
|
|
void CRT::output_level(int number_of_cycles, const char *type)
|
|
{
|
|
_is_receiving_sync = false;
|
|
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Level, type);
|
|
}
|
|
|
|
void CRT::output_data(int number_of_cycles, const char *type)
|
|
{
|
|
_is_receiving_sync = false;
|
|
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Data, type);
|
|
}
|
|
|
|
#pragma mark - Buffer supply
|
|
|
|
void CRT::allocate_write_area(int required_length)
|
|
{
|
|
int xPos = _write_allocation_pointer & (bufferWidth - 1);
|
|
if (xPos + required_length > bufferWidth)
|
|
{
|
|
_write_allocation_pointer &= ~(bufferWidth - 1);
|
|
_write_allocation_pointer = (_write_allocation_pointer + bufferWidth) & ((bufferHeight-1) * bufferWidth);
|
|
}
|
|
|
|
_write_target_pointer = _write_allocation_pointer;
|
|
_write_allocation_pointer += required_length;
|
|
}
|
|
|
|
uint8_t *CRT::get_write_target_for_buffer(int buffer)
|
|
{
|
|
return &_buffers[buffer][_write_target_pointer * _bufferSizes[buffer]];
|
|
}
|