1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-27 22:30:49 +00:00

554 lines
20 KiB
Plaintext

//
// CSMachine.m
// Clock Signal
//
// Created by Thomas Harte on 04/01/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#import "CSMachine.h"
#import "CSMachine+Target.h"
#include "CSROMFetcher.hpp"
#include "MediaTarget.hpp"
#include "JoystickMachine.hpp"
#include "KeyboardMachine.hpp"
#include "KeyCodes.h"
#include "MachineForTarget.hpp"
#include "StandardOptions.hpp"
#include "Typer.hpp"
#include "../../../../Activity/Observer.hpp"
#import "CSStaticAnalyser+TargetVector.h"
#import "NSBundle+DataResource.h"
#import "NSData+StdVector.h"
#include <bitset>
@interface CSMachine() <CSFastLoading>
- (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length;
- (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker;
- (void)addLED:(NSString *)led;
@end
struct LockProtectedDelegate {
// Contractual promise is: machine, the pointer **and** the object **, may be accessed only
// in sections protected by the machineAccessLock;
NSLock *machineAccessLock;
__unsafe_unretained CSMachine *machine;
};
struct SpeakerDelegate: public Outputs::Speaker::Speaker::Delegate, public LockProtectedDelegate {
void speaker_did_complete_samples(Outputs::Speaker::Speaker *speaker, const std::vector<int16_t> &buffer) override {
[machineAccessLock lock];
[machine speaker:speaker didCompleteSamples:buffer.data() length:(int)buffer.size()];
[machineAccessLock unlock];
}
void speaker_did_change_input_clock(Outputs::Speaker::Speaker *speaker) override {
[machineAccessLock lock];
[machine speakerDidChangeInputClock:speaker];
[machineAccessLock unlock];
}
};
struct ActivityObserver: public Activity::Observer {
void register_led(const std::string &name) override {
[machine addLED:[NSString stringWithUTF8String:name.c_str()]];
}
void set_led_status(const std::string &name, bool lit) override {
[machine.delegate machine:machine led:[NSString stringWithUTF8String:name.c_str()] didChangeToLit:lit];
}
void announce_drive_event(const std::string &name, DriveEvent event) override {
[machine.delegate machine:machine ledShouldBlink:[NSString stringWithUTF8String:name.c_str()]];
}
__unsafe_unretained CSMachine *machine;
};
@implementation CSMachine {
SpeakerDelegate _speakerDelegate;
ActivityObserver _activityObserver;
NSLock *_delegateMachineAccessLock;
CSStaticAnalyser *_analyser;
std::unique_ptr<Machine::DynamicMachine> _machine;
JoystickMachine::Machine *_joystickMachine;
CSJoystickManager *_joystickManager;
std::bitset<65536> _depressedKeys;
NSMutableArray<NSString *> *_leds;
}
- (instancetype)initWithAnalyser:(CSStaticAnalyser *)result {
self = [super init];
if(self) {
_analyser = result;
Machine::Error error;
_machine.reset(Machine::MachineForTargets(_analyser.targets, CSROMFetcher(), error));
if(!_machine) return nil;
_inputMode = _machine->keyboard_machine() ? CSMachineKeyboardInputModeKeyboard : CSMachineKeyboardInputModeJoystick;
_leds = [[NSMutableArray alloc] init];
Activity::Source *const activity_source = _machine->activity_source();
if(activity_source) {
_activityObserver.machine = self;
activity_source->set_activity_observer(&_activityObserver);
}
_delegateMachineAccessLock = [[NSLock alloc] init];
_speakerDelegate.machine = self;
_speakerDelegate.machineAccessLock = _delegateMachineAccessLock;
_joystickMachine = _machine->joystick_machine();
}
return self;
}
- (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length {
[self.audioQueue enqueueAudioBuffer:samples numberOfSamples:(unsigned int)length];
}
- (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker {
[self.delegate machineSpeakerDidChangeInputClock:self];
}
- (void)dealloc {
// The two delegate's references to this machine are nilled out here because close_output may result
// in a data flush, which might cause an audio callback, which could cause the audio queue to decide
// that it's out of data, resulting in an attempt further to run the machine while it is dealloc'ing.
//
// They are nilled inside an explicit lock because that allows the delegates to protect their entire
// call into the machine, not just the pointer access.
[_delegateMachineAccessLock lock];
_speakerDelegate.machine = nil;
[_delegateMachineAccessLock unlock];
[_view performWithGLContext:^{
@synchronized(self) {
self->_machine->crt_machine()->close_output();
}
}];
}
- (float)idealSamplingRateFromRange:(NSRange)range {
@synchronized(self) {
Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker();
if(speaker) {
return speaker->get_ideal_clock_rate_in_range((float)range.location, (float)(range.location + range.length));
}
return 0;
}
}
- (void)setAudioSamplingRate:(float)samplingRate bufferSize:(NSUInteger)bufferSize {
@synchronized(self) {
[self setSpeakerDelegate:&_speakerDelegate sampleRate:samplingRate bufferSize:bufferSize];
}
}
- (BOOL)setSpeakerDelegate:(Outputs::Speaker::Speaker::Delegate *)delegate sampleRate:(float)sampleRate bufferSize:(NSUInteger)bufferSize {
@synchronized(self) {
Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker();
if(speaker) {
speaker->set_output_rate(sampleRate, (int)bufferSize);
speaker->set_delegate(delegate);
return YES;
}
return NO;
}
}
- (void)runForInterval:(NSTimeInterval)interval {
@synchronized(self) {
if(_joystickMachine && _joystickManager) {
[_joystickManager update];
// TODO: configurable mapping from physical joypad inputs to machine inputs.
// Until then, apply a default mapping.
size_t c = 0;
std::vector<std::unique_ptr<Inputs::Joystick>> &machine_joysticks = _joystickMachine->get_joysticks();
for(CSJoystick *joystick in _joystickManager.joysticks) {
size_t target = c % machine_joysticks.size();
++++c;
// Post the first two analogue axes presented by the controller as horizontal and vertical inputs,
// unless the user seems to be using a hat.
// SDL will return a value in the range [-32768, 32767], so map from that to [0, 1.0]
if(!joystick.hats.count || !joystick.hats[0].direction) {
if(joystick.axes.count > 0) {
const float x_axis = joystick.axes[0].position;
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Horizontal), x_axis);
}
if(joystick.axes.count > 1) {
const float y_axis = joystick.axes[1].position;
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Vertical), y_axis);
}
} else {
// Forward hats as directions; hats always override analogue inputs.
for(CSJoystickHat *hat in joystick.hats) {
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Up), !!(hat.direction & CSJoystickHatDirectionUp));
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Down), !!(hat.direction & CSJoystickHatDirectionDown));
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Left), !!(hat.direction & CSJoystickHatDirectionLeft));
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Right), !!(hat.direction & CSJoystickHatDirectionRight));
}
}
// Forward all fire buttons, mapping as a function of index.
if(machine_joysticks[target]->get_number_of_fire_buttons()) {
std::vector<bool> button_states((size_t)machine_joysticks[target]->get_number_of_fire_buttons());
for(CSJoystickButton *button in joystick.buttons) {
if(button.isPressed) button_states[(size_t)(((int)button.index - 1) % machine_joysticks[target]->get_number_of_fire_buttons())] = true;
}
for(size_t index = 0; index < button_states.size(); ++index) {
machine_joysticks[target]->set_input(
Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Fire, index),
button_states[index]);
}
}
}
}
_machine->crt_machine()->run_for(interval);
}
}
- (void)setView:(CSOpenGLView *)view aspectRatio:(float)aspectRatio {
_view = view;
[view performWithGLContext:^{
[self setupOutputWithAspectRatio:aspectRatio];
}];
}
- (void)setupOutputWithAspectRatio:(float)aspectRatio {
_machine->crt_machine()->setup_output(aspectRatio);
// Since OS X v10.6, Macs have had a gamma of 2.2.
_machine->crt_machine()->get_crt()->set_output_gamma(2.2f);
_machine->crt_machine()->get_crt()->set_target_framebuffer(0);
}
- (void)drawViewForPixelSize:(CGSize)pixelSize onlyIfDirty:(BOOL)onlyIfDirty {
_machine->crt_machine()->get_crt()->draw_frame((unsigned int)pixelSize.width, (unsigned int)pixelSize.height, onlyIfDirty ? true : false);
}
- (void)paste:(NSString *)paste {
KeyboardMachine::Machine *keyboardMachine = _machine->keyboard_machine();
if(keyboardMachine)
keyboardMachine->type_string([paste UTF8String]);
}
- (NSBitmapImageRep *)imageRepresentation {
// Get the current viewport to establish framebuffer size. Then determine how wide the
// centre 4/3 of that would be.
GLint dimensions[4];
glGetIntegerv(GL_VIEWPORT, dimensions);
GLint proportionalWidth = (dimensions[3] * 4) / 3;
// Grab the framebuffer contents.
std::vector<uint8_t> temporaryData(static_cast<size_t>(proportionalWidth * dimensions[3] * 3));
glReadPixels((dimensions[2] - proportionalWidth) >> 1, 0, proportionalWidth, dimensions[3], GL_RGB, GL_UNSIGNED_BYTE, temporaryData.data());
// Generate an NSBitmapImageRep and populate it with a vertical flip
// of the original data.
NSBitmapImageRep *const result =
[[NSBitmapImageRep alloc]
initWithBitmapDataPlanes:NULL
pixelsWide:proportionalWidth
pixelsHigh:dimensions[3]
bitsPerSample:8
samplesPerPixel:3
hasAlpha:NO
isPlanar:NO
colorSpaceName:NSDeviceRGBColorSpace
bytesPerRow:3 * proportionalWidth
bitsPerPixel:0];
const size_t line_size = static_cast<size_t>(proportionalWidth * 3);
for(GLint y = 0; y < dimensions[3]; ++y) {
memcpy(
&result.bitmapData[static_cast<size_t>(y) * line_size],
&temporaryData[static_cast<size_t>(dimensions[3] - y - 1) * line_size],
line_size);
}
return result;
}
- (void)applyMedia:(const Analyser::Static::Media &)media {
@synchronized(self) {
MediaTarget::Machine *const mediaTarget = _machine->media_target();
if(mediaTarget) mediaTarget->insert_media(media);
}
}
- (void)setJoystickManager:(CSJoystickManager *)joystickManager {
@synchronized(self) {
_joystickManager = joystickManager;
if(_joystickMachine) {
std::vector<std::unique_ptr<Inputs::Joystick>> &machine_joysticks = _joystickMachine->get_joysticks();
for(const auto &joystick: machine_joysticks) {
joystick->reset_all_inputs();
}
}
}
}
- (void)setKey:(uint16_t)key characters:(NSString *)characters isPressed:(BOOL)isPressed {
auto keyboard_machine = _machine->keyboard_machine();
if(self.inputMode == CSMachineKeyboardInputModeKeyboard && keyboard_machine) {
// Don't pass anything on if this is not new information.
if(_depressedKeys[key] == !!isPressed) return;
_depressedKeys[key] = !!isPressed;
// Pick an ASCII code, if any.
char pressedKey = '\0';
if(characters.length) {
unichar firstCharacter = [characters characterAtIndex:0];
if(firstCharacter < 128) {
pressedKey = (char)firstCharacter;
}
}
@synchronized(self) {
Inputs::Keyboard &keyboard = keyboard_machine->get_keyboard();
// Connect the Carbon-era Mac keyboard scancodes to Clock Signal's 'universal' enumeration in order
// to pass into the platform-neutral realm.
#define BIND(source, dest) case source: keyboard.set_key_pressed(Inputs::Keyboard::Key::dest, pressedKey, isPressed); break
switch(key) {
BIND(VK_ANSI_0, k0); BIND(VK_ANSI_1, k1); BIND(VK_ANSI_2, k2); BIND(VK_ANSI_3, k3); BIND(VK_ANSI_4, k4);
BIND(VK_ANSI_5, k5); BIND(VK_ANSI_6, k6); BIND(VK_ANSI_7, k7); BIND(VK_ANSI_8, k8); BIND(VK_ANSI_9, k9);
BIND(VK_ANSI_Q, Q); BIND(VK_ANSI_W, W); BIND(VK_ANSI_E, E); BIND(VK_ANSI_R, R); BIND(VK_ANSI_T, T);
BIND(VK_ANSI_Y, Y); BIND(VK_ANSI_U, U); BIND(VK_ANSI_I, I); BIND(VK_ANSI_O, O); BIND(VK_ANSI_P, P);
BIND(VK_ANSI_A, A); BIND(VK_ANSI_S, S); BIND(VK_ANSI_D, D); BIND(VK_ANSI_F, F); BIND(VK_ANSI_G, G);
BIND(VK_ANSI_H, H); BIND(VK_ANSI_J, J); BIND(VK_ANSI_K, K); BIND(VK_ANSI_L, L);
BIND(VK_ANSI_Z, Z); BIND(VK_ANSI_X, X); BIND(VK_ANSI_C, C); BIND(VK_ANSI_V, V);
BIND(VK_ANSI_B, B); BIND(VK_ANSI_N, N); BIND(VK_ANSI_M, M);
BIND(VK_F1, F1); BIND(VK_F2, F2); BIND(VK_F3, F3); BIND(VK_F4, F4);
BIND(VK_F5, F5); BIND(VK_F6, F6); BIND(VK_F7, F7); BIND(VK_F8, F8);
BIND(VK_F9, F9); BIND(VK_F10, F10); BIND(VK_F11, F11); BIND(VK_F12, F12);
BIND(VK_ANSI_Keypad0, KeyPad0); BIND(VK_ANSI_Keypad1, KeyPad1); BIND(VK_ANSI_Keypad2, KeyPad2);
BIND(VK_ANSI_Keypad3, KeyPad3); BIND(VK_ANSI_Keypad4, KeyPad4); BIND(VK_ANSI_Keypad5, KeyPad5);
BIND(VK_ANSI_Keypad6, KeyPad6); BIND(VK_ANSI_Keypad7, KeyPad7); BIND(VK_ANSI_Keypad8, KeyPad8);
BIND(VK_ANSI_Keypad9, KeyPad9);
BIND(VK_ANSI_Equal, Equals); BIND(VK_ANSI_Minus, Hyphen);
BIND(VK_ANSI_RightBracket, CloseSquareBracket); BIND(VK_ANSI_LeftBracket, OpenSquareBracket);
BIND(VK_ANSI_Quote, Quote); BIND(VK_ANSI_Grave, BackTick);
BIND(VK_ANSI_Semicolon, Semicolon);
BIND(VK_ANSI_Backslash, BackSlash); BIND(VK_ANSI_Slash, ForwardSlash);
BIND(VK_ANSI_Comma, Comma); BIND(VK_ANSI_Period, FullStop);
BIND(VK_ANSI_KeypadDecimal, KeyPadDecimalPoint); BIND(VK_ANSI_KeypadEquals, KeyPadEquals);
BIND(VK_ANSI_KeypadMultiply, KeyPadAsterisk); BIND(VK_ANSI_KeypadDivide, KeyPadSlash);
BIND(VK_ANSI_KeypadPlus, KeyPadPlus); BIND(VK_ANSI_KeypadMinus, KeyPadMinus);
BIND(VK_ANSI_KeypadClear, KeyPadDelete); BIND(VK_ANSI_KeypadEnter, KeyPadEnter);
BIND(VK_Return, Enter); BIND(VK_Tab, Tab);
BIND(VK_Space, Space); BIND(VK_Delete, BackSpace);
BIND(VK_Control, LeftControl); BIND(VK_Option, LeftOption);
BIND(VK_Command, LeftMeta); BIND(VK_Shift, LeftShift);
BIND(VK_RightControl, RightControl); BIND(VK_RightOption, RightOption);
BIND(VK_Escape, Escape); BIND(VK_CapsLock, CapsLock);
BIND(VK_Home, Home); BIND(VK_End, End);
BIND(VK_PageUp, PageUp); BIND(VK_PageDown, PageDown);
BIND(VK_RightShift, RightShift);
BIND(VK_Help, Help);
BIND(VK_ForwardDelete, Delete);
BIND(VK_LeftArrow, Left); BIND(VK_RightArrow, Right);
BIND(VK_DownArrow, Down); BIND(VK_UpArrow, Up);
}
#undef BIND
}
return;
}
auto joystick_machine = _machine->joystick_machine();
if(self.inputMode == CSMachineKeyboardInputModeJoystick && joystick_machine) {
@synchronized(self) {
std::vector<std::unique_ptr<Inputs::Joystick>> &joysticks = joystick_machine->get_joysticks();
if(!joysticks.empty()) {
// Convert to a C++ bool so that the following calls are resolved correctly even if overloaded.
bool is_pressed = !!isPressed;
switch(key) {
case VK_LeftArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Left, is_pressed); break;
case VK_RightArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Right, is_pressed); break;
case VK_UpArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Up, is_pressed); break;
case VK_DownArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Down, is_pressed); break;
case VK_Space: joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); break;
case VK_ANSI_A: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 0), is_pressed); break;
case VK_ANSI_S: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 1), is_pressed); break;
case VK_ANSI_D: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 2), is_pressed); break;
case VK_ANSI_F: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 3), is_pressed); break;
default:
if(characters.length) {
joysticks[0]->set_input(Inputs::Joystick::Input([characters characterAtIndex:0]), is_pressed);
} else {
joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed);
}
break;
}
}
}
}
}
- (void)clearAllKeys {
auto keyboard_machine = _machine->keyboard_machine();
if(keyboard_machine) {
@synchronized(self) {
keyboard_machine->get_keyboard().reset_all_keys();
}
}
auto joystick_machine = _machine->joystick_machine();
if(joystick_machine) {
@synchronized(self) {
for(auto &joystick : joystick_machine->get_joysticks()) {
joystick->reset_all_inputs();
}
}
}
}
#pragma mark - Options
- (void)setUseFastLoadingHack:(BOOL)useFastLoadingHack {
Configurable::Device *configurable_device = _machine->configurable_device();
if(!configurable_device) return;
@synchronized(self) {
_useFastLoadingHack = useFastLoadingHack;
Configurable::SelectionSet selection_set;
append_quick_load_tape_selection(selection_set, useFastLoadingHack ? true : false);
configurable_device->set_selections(selection_set);
}
}
- (void)setVideoSignal:(CSMachineVideoSignal)videoSignal {
Configurable::Device *configurable_device = _machine->configurable_device();
if(!configurable_device) return;
@synchronized(self) {
_videoSignal = videoSignal;
Configurable::SelectionSet selection_set;
Configurable::Display display;
switch(videoSignal) {
case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break;
case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break;
case CSMachineVideoSignalComposite: display = Configurable::Display::Composite; break;
}
append_display_selection(selection_set, display);
configurable_device->set_selections(selection_set);
}
}
- (bool)supportsVideoSignal:(CSMachineVideoSignal)videoSignal {
Configurable::Device *configurable_device = _machine->configurable_device();
if(!configurable_device) return NO;
// Get the options this machine provides.
std::vector<std::unique_ptr<Configurable::Option>> options;
@synchronized(self) {
options = configurable_device->get_options();
}
// Get the standard option for this video signal.
Configurable::StandardOptions option;
switch(videoSignal) {
case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break;
case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break;
case CSMachineVideoSignalComposite: option = Configurable::DisplayComposite; break;
}
std::unique_ptr<Configurable::Option> display_option = std::move(standard_options(option).front());
Configurable::ListOption *display_list_option = dynamic_cast<Configurable::ListOption *>(display_option.get());
NSAssert(display_list_option, @"Expected display option to be a list");
// See whether the video signal is included in the machine options.
for(auto &candidate: options) {
Configurable::ListOption *list_option = dynamic_cast<Configurable::ListOption *>(candidate.get());
// Both should be list options
if(!list_option) continue;
// Check for same name of option.
if(candidate->short_name != display_option->short_name) continue;
// Check that the video signal option is included.
return std::find(list_option->options.begin(), list_option->options.end(), display_list_option->options.front()) != list_option->options.end();
}
return NO;
}
- (void)setUseAutomaticTapeMotorControl:(BOOL)useAutomaticTapeMotorControl {
Configurable::Device *configurable_device = _machine->configurable_device();
if(!configurable_device) return;
@synchronized(self) {
_useAutomaticTapeMotorControl = useAutomaticTapeMotorControl;
Configurable::SelectionSet selection_set;
append_automatic_tape_motor_control_selection(selection_set, useAutomaticTapeMotorControl ? true : false);
configurable_device->set_selections(selection_set);
}
}
- (NSString *)userDefaultsPrefix {
// Assumes that the first machine in the targets list is the source of user defaults.
std::string name = Machine::ShortNameForTargetMachine(_analyser.targets.front()->machine);
return [[NSString stringWithUTF8String:name.c_str()] lowercaseString];
}
- (BOOL)canInsertMedia {
return !!_machine->media_target();
}
#pragma mark - Special machines
- (CSAtari2600 *)atari2600 {
return [[CSAtari2600 alloc] initWithAtari2600:_machine->raw_pointer() owner:self];
}
- (CSZX8081 *)zx8081 {
return [[CSZX8081 alloc] initWithZX8081:_machine->raw_pointer() owner:self];
}
#pragma mark - Input device queries
- (BOOL)hasJoystick {
return !!_machine->joystick_machine();
}
- (BOOL)hasKeyboard {
return !!_machine->keyboard_machine();
}
#pragma mark - Activity observation
- (void)addLED:(NSString *)led {
[_leds addObject:led];
}
- (NSArray<NSString *> *)leds {
return _leds;
}
@end