mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-04 15:05:36 +00:00
580 lines
19 KiB
C++
580 lines
19 KiB
C++
//
|
|
// Executor.hpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 01/03/2024.
|
|
// Copyright © 2024 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include "BarrelShifter.hpp"
|
|
#include "OperationMapper.hpp"
|
|
#include "Registers.hpp"
|
|
#include "../../Numeric/Carry.hpp"
|
|
|
|
namespace InstructionSet::ARM {
|
|
|
|
/// A class compatible with the @c OperationMapper definition of a scheduler which applies all actions
|
|
/// immediately, updating either a set of @c Registers or using the templated @c MemoryT to access
|
|
/// memory. No hooks are currently provided for applying realistic timing.
|
|
template <Model model, typename MemoryT>
|
|
struct Executor {
|
|
bool should_schedule(Condition condition) {
|
|
return registers_.test(condition);
|
|
}
|
|
|
|
template <bool allow_register, bool set_carry, typename FieldsT>
|
|
uint32_t decode_shift(FieldsT fields, uint32_t &rotate_carry, uint32_t pc_offset) {
|
|
// "When R15 appears in the Rm position it will give the value of the PC together
|
|
// with the PSR flags to the barrel shifter. ...
|
|
//
|
|
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
|
|
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
|
|
// when used as Rn or Rm."
|
|
uint32_t operand2;
|
|
if(fields.operand2() == 15) {
|
|
operand2 = registers_.pc_status(pc_offset);
|
|
} else {
|
|
operand2 = registers_.active[fields.operand2()];
|
|
}
|
|
|
|
uint32_t shift_amount;
|
|
if constexpr (allow_register) {
|
|
if(fields.shift_count_is_register()) {
|
|
// "When R15 appears in either of the Rn or Rs positions it will give the value
|
|
// of the PC alone, with the PSR bits replaced by zeroes. ...
|
|
//
|
|
// If a register is used to specify the shift amount, the
|
|
// PC will be 8 bytes ahead when used as Rs."
|
|
shift_amount =
|
|
fields.shift_register() == 15 ?
|
|
registers_.pc(4) :
|
|
registers_.active[fields.shift_register()];
|
|
|
|
// A register shift amount of 0 has a different meaning than an in-instruction
|
|
// shift amount of 0.
|
|
if(!shift_amount) {
|
|
return operand2;
|
|
}
|
|
} else {
|
|
shift_amount = fields.shift_amount();
|
|
}
|
|
} else {
|
|
shift_amount = fields.shift_amount();
|
|
}
|
|
|
|
shift<set_carry>(fields.shift_type(), operand2, shift_amount, rotate_carry);
|
|
return operand2;
|
|
}
|
|
|
|
template <Flags f> void perform(DataProcessing fields) {
|
|
constexpr DataProcessingFlags flags(f);
|
|
const bool shift_by_register = !flags.operand2_is_immediate() && fields.shift_count_is_register();
|
|
|
|
// Write a raw result into the PC proxy if the target is R15; it'll be stored properly later.
|
|
uint32_t pc_proxy = 0;
|
|
auto &destination = fields.destination() == 15 ? pc_proxy : registers_.active[fields.destination()];
|
|
|
|
// "When R15 appears in either of the Rn or Rs positions it will give the value
|
|
// of the PC alone, with the PSR bits replaced by zeroes. ...
|
|
//
|
|
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
|
|
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
|
|
// when used as Rn or Rm."
|
|
const uint32_t operand1 =
|
|
(fields.operand1() == 15) ?
|
|
registers_.pc(shift_by_register ? 8 : 4) :
|
|
registers_.active[fields.operand1()];
|
|
|
|
uint32_t operand2;
|
|
uint32_t rotate_carry = registers_.c();
|
|
|
|
// Populate carry from the shift only if it'll be used.
|
|
constexpr bool shift_sets_carry = is_logical(flags.operation()) && flags.set_condition_codes();
|
|
|
|
// Get operand 2.
|
|
if constexpr (flags.operand2_is_immediate()) {
|
|
operand2 = fields.immediate();
|
|
if(fields.rotate()) {
|
|
shift<ShiftType::RotateRight, shift_sets_carry>(operand2, fields.rotate(), rotate_carry);
|
|
}
|
|
} else {
|
|
operand2 = decode_shift<true, shift_sets_carry>(fields, rotate_carry, shift_by_register ? 8 : 4);
|
|
}
|
|
|
|
// Perform the data processing operation.
|
|
uint32_t conditions = 0;
|
|
switch(flags.operation()) {
|
|
// Logical operations.
|
|
case DataProcessingOperation::AND: conditions = destination = operand1 & operand2; break;
|
|
case DataProcessingOperation::EOR: conditions = destination = operand1 ^ operand2; break;
|
|
case DataProcessingOperation::ORR: conditions = destination = operand1 | operand2; break;
|
|
case DataProcessingOperation::BIC: conditions = destination = operand1 & ~operand2; break;
|
|
|
|
case DataProcessingOperation::MOV: conditions = destination = operand2; break;
|
|
case DataProcessingOperation::MVN: conditions = destination = ~operand2; break;
|
|
|
|
case DataProcessingOperation::TST: conditions = operand1 & operand2; break;
|
|
case DataProcessingOperation::TEQ: conditions = operand1 ^ operand2; break;
|
|
|
|
case DataProcessingOperation::ADD:
|
|
case DataProcessingOperation::ADC:
|
|
case DataProcessingOperation::CMN:
|
|
conditions = operand1 + operand2;
|
|
|
|
if constexpr (flags.operation() == DataProcessingOperation::ADC) {
|
|
conditions += registers_.c();
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_c(Numeric::carried_out<true, 31>(operand1, operand2, conditions));
|
|
registers_.set_v(Numeric::overflow<true>(operand1, operand2, conditions));
|
|
}
|
|
|
|
if constexpr (!is_comparison(flags.operation())) {
|
|
destination = conditions;
|
|
}
|
|
break;
|
|
|
|
case DataProcessingOperation::SUB:
|
|
case DataProcessingOperation::SBC:
|
|
case DataProcessingOperation::CMP:
|
|
conditions = operand1 - operand2;
|
|
|
|
if constexpr (flags.operation() == DataProcessingOperation::SBC) {
|
|
conditions -= registers_.c();
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_c(Numeric::carried_out<false, 31>(operand1, operand2, conditions));
|
|
registers_.set_v(Numeric::overflow<false>(operand1, operand2, conditions));
|
|
}
|
|
|
|
if constexpr (!is_comparison(flags.operation())) {
|
|
destination = conditions;
|
|
}
|
|
break;
|
|
|
|
case DataProcessingOperation::RSB:
|
|
case DataProcessingOperation::RSC:
|
|
conditions = operand2 - operand1;
|
|
|
|
if constexpr (flags.operation() == DataProcessingOperation::RSC) {
|
|
conditions -= registers_.c();
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_c(Numeric::carried_out<false, 31>(operand2, operand1, conditions));
|
|
registers_.set_v(Numeric::overflow<false>(operand2, operand1, conditions));
|
|
}
|
|
|
|
destination = conditions;
|
|
break;
|
|
}
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
// "When Rd is a register other than R15, the condition code flags in the PSR may be
|
|
// updated from the ALU flags as described above. When Rd is R15 and the S flag in
|
|
// the instruction is set, the PSR is overwritten by the corresponding ALU result.
|
|
//
|
|
// ... if the instruction is of a type which does not normally produce a result
|
|
// (CMP, CMN, TST, TEQ) but Rd is R15 and the S bit is set, the result will be used in
|
|
// this case to update those PSR flags which are not protected by virtue of the
|
|
// processor mode."
|
|
|
|
if(fields.destination() == 15) {
|
|
if constexpr (is_comparison(flags.operation())) {
|
|
registers_.set_status(pc_proxy);
|
|
} else {
|
|
registers_.set_status(pc_proxy);
|
|
registers_.set_pc(pc_proxy);
|
|
}
|
|
} else {
|
|
// Set N and Z in a unified way.
|
|
registers_.set_nz(conditions);
|
|
|
|
// Set C from the barrel shifter if applicable.
|
|
if constexpr (shift_sets_carry) {
|
|
registers_.set_c(rotate_carry);
|
|
}
|
|
}
|
|
} else {
|
|
// "If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written."
|
|
if(fields.destination() == 15) {
|
|
registers_.set_pc(pc_proxy);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <Flags f> void perform(Multiply fields) {
|
|
constexpr MultiplyFlags flags(f);
|
|
|
|
// R15 rules:
|
|
//
|
|
// * Rs: no PSR, 8 bytes ahead;
|
|
// * Rn: with PSR, 8 bytes ahead;
|
|
// * Rm: with PSR, 12 bytes ahead.
|
|
|
|
const uint32_t multiplicand = fields.multiplicand() == 15 ? registers_.pc(4) : registers_.active[fields.multiplicand()];
|
|
const uint32_t multiplier = fields.multiplier() == 15 ? registers_.pc_status(4) : registers_.active[fields.multiplier()];
|
|
const uint32_t accumulator =
|
|
flags.operation() == MultiplyFlags::Operation::MUL ? 0 :
|
|
(fields.multiplicand() == 15 ? registers_.pc_status(8) : registers_.active[fields.accumulator()]);
|
|
|
|
const uint32_t result = multiplicand * multiplier + accumulator;
|
|
|
|
if constexpr (flags.set_condition_codes()) {
|
|
registers_.set_nz(result);
|
|
// V is unaffected; C is undefined.
|
|
}
|
|
|
|
if(fields.destination() != 15) {
|
|
registers_.active[fields.destination()] = result;
|
|
}
|
|
}
|
|
|
|
template <Flags f> void perform(Branch branch) {
|
|
constexpr BranchFlags flags(f);
|
|
|
|
if constexpr (flags.operation() == BranchFlags::Operation::BL) {
|
|
registers_.active[14] = registers_.pc(0);
|
|
}
|
|
registers_.set_pc(registers_.pc(4) + branch.offset());
|
|
}
|
|
|
|
template <Flags f> void perform(SingleDataTransfer transfer) {
|
|
constexpr SingleDataTransferFlags flags(f);
|
|
|
|
// Calculate offset.
|
|
uint32_t offset;
|
|
if constexpr (flags.offset_is_register()) {
|
|
// The 8 shift control bits are described in 6.2.3, but
|
|
// the register specified shift amounts are not available
|
|
// in this instruction class.
|
|
uint32_t carry = registers_.c();
|
|
offset = decode_shift<false, false>(transfer, carry, 4);
|
|
} else {
|
|
offset = transfer.immediate();
|
|
}
|
|
|
|
// Obtain base address.
|
|
uint32_t address =
|
|
transfer.base() == 15 ?
|
|
registers_.pc(4) :
|
|
registers_.active[transfer.base()];
|
|
|
|
// Determine what the address will be after offsetting.
|
|
uint32_t offsetted_address = address;
|
|
if constexpr (flags.add_offset()) {
|
|
offsetted_address += offset;
|
|
} else {
|
|
offsetted_address -= offset;
|
|
}
|
|
|
|
// If preindexing, apply now.
|
|
if constexpr (flags.pre_index()) {
|
|
address = offsetted_address;
|
|
}
|
|
|
|
// Check for an address exception.
|
|
if(address >= (1 << 26)) {
|
|
registers_.exception<Registers::Exception::Address>();
|
|
return;
|
|
}
|
|
|
|
constexpr bool trans = !flags.pre_index() && flags.write_back_address();
|
|
if constexpr (flags.operation() == SingleDataTransferFlags::Operation::STR) {
|
|
const uint32_t source =
|
|
transfer.source() == 15 ?
|
|
registers_.pc_status(8) :
|
|
registers_.active[transfer.source()];
|
|
|
|
bool did_write;
|
|
if constexpr (flags.transfer_byte()) {
|
|
did_write = bus.template write<uint8_t>(address, uint8_t(source), registers_.mode(), trans);
|
|
} else {
|
|
// "The data presented to the data bus are not affected if the address is not word aligned".
|
|
did_write = bus.template write<uint32_t>(address, source, registers_.mode(), trans);
|
|
}
|
|
|
|
if(!did_write) {
|
|
registers_.exception<Registers::Exception::DataAbort>();
|
|
return;
|
|
}
|
|
} else {
|
|
bool did_read;
|
|
uint32_t value;
|
|
|
|
if constexpr (flags.transfer_byte()) {
|
|
uint8_t target;
|
|
did_read = bus.template read<uint8_t>(address, target, registers_.mode(), trans);
|
|
value = target;
|
|
} else {
|
|
did_read = bus.template read<uint32_t>(address, value, registers_.mode(), trans);
|
|
|
|
// "An address offset from a word boundary will cause the data to be rotated into the
|
|
// register so that the addressed byte occuplies bits 0 to 7."
|
|
switch(address & 3) {
|
|
case 0: break;
|
|
case 1: value = (value >> 8) | (value << 24); break;
|
|
case 2: value = (value >> 16) | (value << 16); break;
|
|
case 3: value = (value >> 24) | (value << 8); break;
|
|
}
|
|
}
|
|
|
|
if(!did_read) {
|
|
registers_.exception<Registers::Exception::DataAbort>();
|
|
return;
|
|
}
|
|
|
|
if(transfer.destination() == 15) {
|
|
registers_.set_pc(value);
|
|
} else {
|
|
registers_.active[transfer.destination()] = value;
|
|
}
|
|
}
|
|
|
|
// If either postindexing or else with writeback, update base.
|
|
if constexpr (!flags.pre_index() || flags.write_back_address()) {
|
|
if(transfer.base() == 15) {
|
|
registers_.set_pc(offsetted_address);
|
|
} else {
|
|
registers_.active[transfer.base()] = offsetted_address;
|
|
}
|
|
}
|
|
}
|
|
template <Flags f> void perform(BlockDataTransfer transfer) {
|
|
constexpr BlockDataTransferFlags flags(f);
|
|
|
|
// Grab a copy of the list of registers to transfer.
|
|
const uint16_t list = transfer.register_list();
|
|
|
|
// Read the base address and take a copy in case a data abort means that
|
|
// it has to be restored later, and to write that value rather than
|
|
// the final address if the base register is first in the write-out list.
|
|
uint32_t address = transfer.base() == 15 ?
|
|
registers_.pc_status(4) :
|
|
registers_.active[transfer.base()];
|
|
const uint32_t initial_address = address;
|
|
|
|
// Figure out what the final address will be, since that's what'll be
|
|
// in the output if the base register is second or beyond in the
|
|
// write-out list.
|
|
//
|
|
// Writes are always ordered from lowest address to highest; adjust the
|
|
// start address if this write is supposed to fill memory downward from
|
|
// the base.
|
|
|
|
// TODO: use std::popcount when adopting C++20.
|
|
uint32_t total = ((list & 0xa) >> 1) + (list & 0x5);
|
|
total = ((list & 0xc) >> 2) + (list & 0x3);
|
|
|
|
uint32_t final_address;
|
|
if constexpr (!flags.add_offset()) {
|
|
final_address = address + total * 4;
|
|
address = final_address;
|
|
} else {
|
|
final_address = address + total * 4;
|
|
}
|
|
|
|
// For loads, keep a record of the value replaced by the last load and
|
|
// where it came from. A data abort cancels both the current load and
|
|
// the one before it, so this is used by this implementation to undo
|
|
// the previous load in that case.
|
|
struct {
|
|
uint32_t *target = nullptr;
|
|
uint32_t value;
|
|
} last_replacement;
|
|
|
|
// Check whether access is forced ot the user bank; if so then switch
|
|
// to it now. Also keep track of the original mode to switch back at
|
|
// the end.
|
|
const Mode original_mode = registers_.mode();
|
|
const bool adopt_user_mode =
|
|
(
|
|
flags.operation() == BlockDataTransferFlags::Operation::STM &&
|
|
flags.load_psr()
|
|
) ||
|
|
(
|
|
flags.operation() == BlockDataTransferFlags::Operation::LDM &&
|
|
!(list & (1 << 15))
|
|
);
|
|
if(adopt_user_mode) {
|
|
registers_.set_mode(Mode::User);
|
|
}
|
|
|
|
bool address_error = false;
|
|
|
|
// Keep track of whether all accesses succeeded in order potentially to
|
|
// throw a data abort later.
|
|
bool accesses_succeeded = true;
|
|
const auto access = [&](uint32_t &value) {
|
|
// Update address in advance for:
|
|
// * pre-indexed upward stores; and
|
|
// * post-indxed downward stores.
|
|
if constexpr (flags.pre_index() == flags.add_offset()) {
|
|
address += 4;
|
|
}
|
|
|
|
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
|
|
if(!address_error) {
|
|
// "If the abort occurs during a store multiple instruction, ARM takes little action until
|
|
// the instruction completes, whereupon it enters the data abort trap. The memory manager is
|
|
// responsible for preventing erroneous writes to the memory."
|
|
accesses_succeeded &= bus.template write<uint32_t>(address, value, registers_.mode(), false);
|
|
}
|
|
} else {
|
|
// When ARM detects a data abort during a load multiple instruction, it modifies the operation of
|
|
// the instruction to ensure that recovery is possible.
|
|
//
|
|
// * Overwriting of registers stops when the abort happens. The aborting load will not
|
|
// take place, nor will the preceding one ...
|
|
// * The base register is restored, to its modified value if write-back was requested.
|
|
if(accesses_succeeded) {
|
|
const uint32_t replaced = value;
|
|
accesses_succeeded &= bus.template read<uint32_t>(address, value, registers_.mode(), false);
|
|
|
|
// Update the last-modified slot if the access succeeded; otherwise
|
|
// undo the last modification if there was one, and undo the base
|
|
// address change.
|
|
if(accesses_succeeded) {
|
|
last_replacement.value = replaced;
|
|
last_replacement.target = &value;
|
|
} else {
|
|
if(last_replacement.target) {
|
|
*last_replacement.target = last_replacement.value;
|
|
}
|
|
|
|
// Also restore the base register.
|
|
if(transfer.base() != 15) {
|
|
if constexpr (flags.write_back_address()) {
|
|
registers_.active[transfer.base()] = final_address;
|
|
} else {
|
|
registers_.active[transfer.base()] = initial_address;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Implicitly: do the access anyway, but don't store the value. I think.
|
|
uint32_t throwaway;
|
|
bus.template read<uint32_t>(address, throwaway, registers_.mode(), false);
|
|
}
|
|
}
|
|
|
|
// Update address after the fact for:
|
|
// * post-indexed upward stores; and
|
|
// * pre-indxed downward stores.
|
|
if constexpr (flags.pre_index() != flags.add_offset()) {
|
|
address += 4;
|
|
}
|
|
};
|
|
|
|
// Check for an address exception.
|
|
address_error = address >= (1 << 26);
|
|
|
|
// Write out registers 1 to 14.
|
|
for(int c = 0; c < 15; c++) {
|
|
if(list & (1 << c)) {
|
|
access(registers_.active[c]);
|
|
|
|
// Modify base register after each write if writeback is enabled.
|
|
// This'll ensure the unmodified value goes out if it was the
|
|
// first-selected register only.
|
|
if constexpr (flags.write_back_address()) {
|
|
if(transfer.base() != 15) {
|
|
registers_.active[transfer.base()] = final_address;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Definitively write back, even if the earlier register list
|
|
// was empty.
|
|
if constexpr (flags.write_back_address()) {
|
|
if(transfer.base() != 15) {
|
|
registers_.active[transfer.base()] = final_address;
|
|
}
|
|
}
|
|
|
|
// Read or write the program counter as a special case if it was in the list.
|
|
if(list & (1 << 15)) {
|
|
uint32_t value;
|
|
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
|
|
value = registers_.pc_status(8);
|
|
access(value);
|
|
} else {
|
|
access(value);
|
|
registers_.set_pc(value);
|
|
if constexpr (flags.load_psr()) {
|
|
registers_.set_status(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If user mode was unnaturally forced, switch back to the actual
|
|
// current operating mode.
|
|
if(adopt_user_mode) {
|
|
registers_.set_mode(original_mode);
|
|
}
|
|
|
|
// Finally throw an exception if necessary.
|
|
if(address_error) {
|
|
registers_.exception<Registers::Exception::Address>();
|
|
} else if(!accesses_succeeded) {
|
|
registers_.exception<Registers::Exception::DataAbort>();
|
|
}
|
|
}
|
|
|
|
void software_interrupt() {
|
|
registers_.exception<Registers::Exception::SoftwareInterrupt>();
|
|
}
|
|
void unknown() {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
|
|
// Act as if no coprocessors present.
|
|
template <Flags> void perform(CoprocessorRegisterTransfer) {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
template <Flags> void perform(CoprocessorDataOperation) {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
template <Flags> void perform(CoprocessorDataTransfer) {
|
|
registers_.exception<Registers::Exception::UndefinedInstruction>();
|
|
}
|
|
|
|
MemoryT bus;
|
|
|
|
/// Sets the expected address of the instruction after whichever is about to be executed.
|
|
/// So it's PC+4 compared to most other systems.
|
|
void set_pc(uint32_t pc) {
|
|
registers_.set_pc(pc);
|
|
}
|
|
|
|
/// @returns The address of the instruction that should be fetched next. So as execution of each instruction
|
|
/// begins, this will be +4 from the instruction being executed; at the end of the instruction it'll either still be +4
|
|
/// or else be some other address if a branch or exception has occurred.
|
|
uint32_t pc() const {
|
|
return registers_.pc(0);
|
|
}
|
|
|
|
/// @returns The current processor mode.
|
|
Mode mode() const {
|
|
return registers_.mode();
|
|
}
|
|
|
|
private:
|
|
Registers registers_;
|
|
};
|
|
|
|
/// Provides an analogue of the @c OperationMapper -affiliated @c dispatch that also updates the
|
|
/// executor's program counter appropriately.
|
|
template <Model model, typename MemoryT>
|
|
void execute(uint32_t instruction, Executor<model, MemoryT> &executor) {
|
|
executor.set_pc(executor.pc() + 4);
|
|
dispatch<model>(instruction, executor);
|
|
}
|
|
|
|
}
|